Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Tìm giao điểm của hai đường thẳng:
LG a
LG a
\(\left( {{d_1}} \right):5x - 2y = c\) và \(\left( {{d_2}} \right):x + by = 2,\) biết rằng \(({d_1})\) đi qua điểm \(A (5; -1)\) và \(({d_2})\) đi qua điểm \(B(-7; 3);\)
Phương pháp giải:
Sử dụng:
- Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).
- Hai đường thẳng \(({d_1})\): \(ax + by = c\) và \(({d_2})\): \(a'x+b'y = c'\) cắt nhau tại điểm \(M\) thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{
{ax + by = c} \cr
{a'x+b'y = c'} \cr} } \right.\)
- Cách giải hệ phương trình bằng phương pháp thế:
+ Bước \(1\): Rút \(x\) hoặc \(y\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.
+ Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.
Lời giải chi tiết:
Vì \(({d_1})\): \(5x - 2y = c\) đi qua điểm \(A(5; -1)\) nên
\(5.5 - 2.\left( { - 1} \right) = c \Leftrightarrow c = 27.\)
Khi đó phương trình đường thẳng \(({d_1})\): \(5x - 2y = 27\)
Vì \(\left( {{d_2}} \right):x + by = 2\) đi qua điểm \(B( -7; 3)\) nên
\( - 7 + 3b = 2 \Leftrightarrow 3b = 9 \Leftrightarrow b = 3\)
Khi đó phương trình đường thẳng \(\left( {{d_2}} \right):x + 3y = 2\)
Tọa độ giao điểm của \(({d_1})\) và \(({d_2})\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{5x - 2y = 27} \cr
{x + 3y = 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2 - 3y} \cr
{5\left( {2 - 3y} \right) - 2y = 27} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2 - 3y} \cr
{10 - 15y - 2y = 27} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2 - 3y} \cr
{ - 17y = 17} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2 - 3y} \cr
{y = - 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 5} \cr
{y = - 1} \cr} } \right. \cr} \)
Vậy tọa độ giao điểm của \(({d_1})\) và \(({d_2})\) là \((5; -1)\)
LG b
LG b
\(\left( {{d_1}} \right):ax + 2y = - 3\) và \(\left( {{d_2}} \right):3x - by = 5,\) biết rằng \(({d_1})\) đi qua điểm \(M(3; 9)\) và \(({d_2})\) đi qua điểm \(N(-1; 2).\)
Phương pháp giải:
Sử dụng:
- Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).
- Hai đường thẳng \(({d_1})\): \(ax + by = c\) và \(({d_2})\): \(a'x+b'y = c'\) cắt nhau tại điểm \(M\) thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{
{ax + by = c} \cr
{a'x+b'y = c'} \cr} } \right.\)
- Cách giải hệ phương trình bằng phương pháp thế:
+ Bước \(1\): Rút \(x\) hoặc \(y\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.
+ Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.
Lời giải chi tiết:
Vì \(\left( {{d_1}} \right):ax + 2y = -3\) đi qua điểm \(M (3; 9)\) nên \(a.3 + 2.9 = - 3 \Leftrightarrow 3a = - 21 \\ \Leftrightarrow a = - 7\)
Khi đó phương trình đường thẳng \(\left( {{d_1}} \right): - 7x + 2y = - 3\)
Vì \(\left( {{d_2}} \right):3x - by = 5\) đi qua điểm \(N (-1; 2)\) nên \(3.\left( { - 1} \right) - b.2 = 5 \Leftrightarrow - 2b = 8 \\ \Leftrightarrow b = - 4\)
Khi đó phương trình đường thẳng \(\left( {{d_2}} \right):3x + 4y = 5\)
Tọa độ giao điểm của \(({d_1})\)và \(({d_2})\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{ - 7x + 2y = - 3} \cr
{3x + 4y = 5} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{y = \displaystyle {{7x - 3} \over 2}} \cr
{\displaystyle 3x + 4.{{7x - 3} \over 2} = 5} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = \displaystyle {{7x - 3} \over 2}} \cr
{17x = 11} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y =\displaystyle {{7x - 3} \over 2}} \cr
{x = \displaystyle{{11} \over {17}}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x =\displaystyle {{11} \over {17}}} \cr
{y = \displaystyle {{13} \over {17}}} \cr} } \right. \cr} \)
Vậy tọa độ giao điểm của \(({d_1})\)và \(({d_2})\) là \(\displaystyle\left( {{{11} \over {17}};{{13} \over {17}}} \right)\).
Đề thi học kì 2
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 9
Đề thi vào 10 môn Anh Đắk Lắk
Đề thi vào 10 môn Văn Trà Vinh
Đề thi học kì 2 của các trường có lời giải – Mới nhất