Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Chứng minh:
LG câu a
LG câu a
\(\sqrt {9 - \sqrt {17} } .\sqrt {9 + \sqrt {17} } = 8\)
Phương pháp giải:
Áp dụng:
Quy tắc nhân các căn bậc hai:
Muốn nhân các căn bậc hai của số không âm, ta có thể nhân các số dưới dấu căn với nhau rồi khai phương kết quả đó, hay \(\sqrt A .\sqrt B = \sqrt {A.B} \) với \(A \ge 0\); \(B \ge 0\).
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \sqrt {9 - \sqrt {17} } .\sqrt {9 + \sqrt {17} } \cr
& = \sqrt {\left( {9 - \sqrt {17} } \right)\left( {9 + \sqrt {17} } \right)} \cr} \)
\(= \sqrt {9^2 - (\sqrt {17})^2} = \sqrt {81 - 17} \)\(= \sqrt {64} = 8\)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
LG câu b
LG câu b
\(2\sqrt 2 \left( {\sqrt 3 - 2} \right) \)\(+ {\left( {1 + 2\sqrt 2 } \right)^2} - 2\sqrt 6 = 9\)
Phương pháp giải:
Áp dụng:
Quy tắc nhân các căn bậc hai:
Muốn nhân các căn bậc hai của số không âm, ta có thể nhân các số dưới dấu căn với nhau rồi khai phương kết quả đó, hay \(\sqrt A .\sqrt B = \sqrt {A.B} \) với \(A \ge 0\); \(B \ge 0\).
Hằng đẳng thức: \({(A + B)^2} = {A^2} + 2AB + {B^2}\).
Lời giải chi tiết:
Ta có:
\(2\sqrt 2 \left( {\sqrt 3 - 2} \right) + {\left( {1 + 2\sqrt 2 } \right)^2} - 2\sqrt 6 \)
\(\eqalign{
& = 2\sqrt 6 - 4\sqrt 2 + 1 + 4\sqrt 2 + 8 - 2\sqrt 6 \cr
& = 1 + 8 = 9 \cr} \)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Bài 7. Các nhân tố ảnh hưởng đến sự phát triển và phân bố nông nghiệp
Đề cương ôn tập học kì 1 - Vật lí 9
DI TRUYỀN VÀ BIẾN DỊ
Đề thi, đề kiểm tra học kì 2 - Địa lí 9
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Toán lớp 9