PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

Bài 27 trang 68 SBT toán 9 tập 1

Đề bài

a) Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các hàm số sau:  

                                        \(y = x\) (1)

                                        \(y = 0,5x\) (2)

b) Đường thẳng (d) song song với trục \(Ox\) và cắt trục tung \(Oy\) tại điểm C có tung độ bằng 2, theo thứ tự cắt các đường thẳng (1) và (2) tại D và E.

Tìm tọa độ của các điểm D, E . Tính chu vi và diện tích của tam giác ODE.

Phương pháp giải - Xem chi tiết

+) Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\)

Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\).

+) Chu vi tam giác bằng tổng ba cạnh

+) Diện tích tam giác bằng nửa tích chiều cao với cạnh đáy tương ứng. 

Lời giải chi tiết

 

a) * Vẽ đồ thị hàm số \(y = x\)

Cho \(x = 0\) thì \(y = 0\). Ta có : \(O(0;0)\)

Cho \(x = 1\) thì \(y = 1\). Ta có: \(A_1(1;1)\) 

Đồ thị hàm số \(y = x\) là đường thẳng đi qua O và \(A_1.\)

* Vẽ đồ thị hàm số \(y = 0,5x\)

Cho \(x = 0\) thì \(y = 0.\) Ta có : \(O(0;0)\)

Cho \(x = 1\) thì \(y = 0,5.\) Ta có : \(A_2(1;0,5)\)

Đồ thị hàm số \(y = 0,5x\) là đường thẳng đi qua \(O\) và \(A_2\) .

b) Qua điểm \(C\) trên trục tung có tung độ bằng \(2,\) kẻ đường thẳng song song với \(Ox\) cắt đồ thị hàm số \(y = x\) tại \(D\) , cắt đồ thị hàm số \(y = 0,5x\) tại \(E.\)

Điểm D có tung độ bằng \(2.\)

Thay giá trị \(y = 2\) vào hàm số \(y = x\) ta được \(x = 2\)

Vậy điểm \(D(2;2)\)

Điểm E có tung độ bằng \(2.\)

Thay giá trị \(y = 2\) vào hàm số \(y = 0,5x\) ta được \(x = 4.\)

Vậy điểm \(E(4;2)\)

Gọi \(D’\) và \(E’ \) lần lượt là hình chiều của \(D\) và \(E\) trên \(Ox.\)

Ta có: \(OD’ = 2, OE’ = 4.\)

Áp dụng định lý Pi-ta-go vào tam giác vuông \(ODD’,\) ta có:

\(O{D^2} = OD{'^2} + {\rm{DD}}{'^2} = {2^2} + {2^2} = 8\)

Suy ra: \(OD = \sqrt 8  = 2\sqrt 2 \)

Áp dụng định lý Pytago vào tam giác vuông \(OEE’,\) ta có:

\(O{E^2} = OE{'^2}{\rm{ + EE}}{{\rm{'}}^2} = {4^2} + {2^2} = 20\)

Suy ra: \(OE = \sqrt {20}  = 2\sqrt 5 \)

Lại có: \(DE = CE - CD = 4 - 2 = 2\)

Chu vi tam giác \(ODE\) bằng:

\(\eqalign{
& OD + DE + EO \cr 
& = 2\sqrt 2 + 2 + 2\sqrt 5 \cr 
& = 2\left( {\sqrt 2 + 1 + \sqrt 5 } \right) \cr} \)

Diện tích tam giác \(ODE\) bằng: \(\dfrac{1}{2}DE.OC = \dfrac{1}{2}.2.2 = 2\) (đơn vị diện tích).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved