1. Nội dung câu hỏi
Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = 1\) và \(q = 2\). Số 1 024 là số hạng thứ bao nhiêu của cấp số nhân đó?
2. Phương pháp giải
Sử dụng kiến thức về số hạng tổng quát của cấp số nhân để tính: Nếu một cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\)
3. Lời giải chi tiết
Số hạng tổng quát của cấp số nhân là: \({u_n} = 1.{q^{n - 1}} = {2^{n - 1}}\).
Ta có: \(1\;024 = {2^{n - 1}} \Rightarrow n - 1 = 10 \Rightarrow n = 11\)
Vậy 1 024 là số hạng thứ 11 của cấp số nhân đó.
Unit 15: Space Conquest - Cuộc chinh phục không gian
Unit 7: Things that Matter
Unit 2: The generation gap
CHƯƠNG IV: ĐẠI CƯƠNG VỀ HÓA HỌC HỮU CƠ
Chủ đề 4. Dòng điện. Mạch điện
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11