Câu hỏi 41 - Mục Bài tập trang 104

1. Nội dung câu hỏi

Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\). Kẻ \(HJ\) vuông góc với \(AB\) tại \(J\) và \(HK\) vuông góc với \(AC\) tại \(K\). Trên tia \(HJ\) lấy điểm \(D\) sao cho \(DJ = JH\). Trên tia \(HK\) lấy điểm \(E\) sao cho \(EK = KH\).

a)     Chứng minh \(A\) là trung điểm của \(DE\).

b)    Tứ giác \(AJHK\) là hình gì? Vì sao?

c)     Chứng minh \(BC = BD + CE\).

 

2. Phương pháp giải 

Dựa vào các dấu hiệu nhận biết của hình vuông, hình chữ nhật, hình bình hành để chứng minh.

 

3. Lời giải chi tiết

a)     Xét \(\Delta ADJ\) vuông tại \(J\) và \(\Delta AHJ\) vuông tại \(J\) có:

\(DJ = HJ\) (gt), \(AJ\) là cạnh chung

Do đó \(\Delta ADJ = \Delta AHJ\) (hai cạnh góc vuông)

Suy ra \(AD = AH\) (hai cạnh tương ứng) và \(\widehat {JAD} = \widehat {JAH}\) (hai góc tương ứng)

Tương tự ta cũng chứng minh được \(\Delta AHK = \Delta AEk\) (hai cạnh góc vuông)

Suy ra \(AH = AE\) (hai cạnh tương ứng) và \(\widehat {KAH} = \widehat {KAE}\) (hai góc tương ứng)

Ta có:

\(\widehat {JAD} + \widehat {JAH} + \widehat {KAH} + \widehat {KAE} = 2\left( {\widehat {JAH} + \widehat {KAH}} \right) = 2.\widehat {JAK} = 2.90^\circ  = 180^\circ \)

Hay \(\widehat {DAE} = 180^\circ \) nên ba điểm \(D,A,E\) thẳng hàng

Lại có \(AD = AH\) và \(AH = AE\) nên \(AD = AE\)

Do đó \(A\) là trung điểm của \(DE\).

b)    Ta có \(AB \bot HE\) tại \(K\) nên \(\widehat {AJH} = 90^\circ \)

\(AC \bot HE\) tại \(K\) nên \(\widehat {AKH} = 90^\circ \)

Xét tứ giác \(AJKH\) có:

\(\widehat {AJH} = \widehat {JAK} = \widehat {AKH} = 90^\circ \) nên là hình chữ nhật.

c)     Xét tam giác \(BDJ\) vuông tại \(J\) và tam giác \(BHJ\) vuông tại \(J\) có:

\(DJ = HJ\) (gt), \(BJ\) là cạnh chung

Do đó \(\Delta BDJ = \Delta BHJ\) (hai cạnh góc vuông)

Suy ra \(BD = BH\) (hai cạnh tương ứng)

Tương tự, ta cũng có \(\Delta CHK = \Delta CEK\) (hai cạnh góc vuông)

Suy ra \(CH = CE\) (hai cạnh tương ứng)

Khi đó \(BC = BH + CH = BD + CE\)

Vậy \(BC = BD + CE\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved