Tìm giới hạn của dãy số \(\left( {{u_n}} \right)\) với
LG a
\({u_n} = {{{{\left( { - 1} \right)}^n}} \over {{n^2} + 1}}\)
Phương pháp giải:
Sử dụng giới hạn kẹp đưa về giới hạn các dãy số đã biết và tính toán
Lời giải chi tiết:
Ta có, \(\left| {{u_n}} \right| = \left| {{{{{\left( { - 1} \right)}^n}} \over {{n^2} + 1}}} \right| = {1 \over {{n^2} + 1}}\). Đặt \({v_n} = {1 \over {{n^2} + 1}}\) (1)
Ta có \(\lim {v_n} = \lim {1 \over {{n^2} + 1}} = \lim {{{1 \over {{n^2}}}} \over {1 + {1 \over {{n^2}}}}} = 0\)
Do đó, \(\left| {{v_n}} \right|\) có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.
Từ (1) suy ra, \(\left| {{u_n}} \right| = {v_n} = \left| {{v_n}} \right|\)
Vậy, \(\left| {{u_n}} \right|\) cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là \(\lim {u_n} = 0\)
LG b
\({u_n} = {{{2^n} - n} \over {{3^n} + 1}}\)
Phương pháp giải:
Sử dụng giới hạn kẹp đưa về giới hạn các dãy số đã biết và tính toán.
Lời giải chi tiết:
Ta có: \(\left| {{u_n}} \right| = \left| {{{{2^n} - n} \over {{3^n} + 1}}} \right| < {{{2^n}} \over {{3^n} + 1}}=v_n\)
\(\lim \dfrac{{{2^n}}}{{{3^n} + 1}} = \lim \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^n}}}{{1 + \dfrac{1}{{{3^n}}}}}\) \( = \dfrac{0}{{1 + 0}} = 0\)
\( \Rightarrow {v_n} = \dfrac{{{2^n}}}{{{3^n} + 1}}\) nhỏ hơn một số dương bé tùy ý từ một số hạng nào đó trở đi
\( \Rightarrow \left| {{u_n}} \right| < {v_n}\) cũng nhỏ hơn một số dương bé tuy ý từ một số hạng nào đó trở đi
\( \Rightarrow \lim {u_n} = 0\) (theo định nghĩa)
CHƯƠNG I - ĐIỆN TÍCH ĐIỆN TRƯỜNG
SBT Ngữ văn 11 - Kết nối tri thức tập 2
Review 2 (Units 4-5)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Toán lớp 11
Chủ đề 3. Sinh trưởng và phát triển ở sinh vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11