Tìm giới hạn của dãy số \(\left( {{u_n}} \right)\) với
LG a
\({u_n} = {{{{\left( { - 1} \right)}^n}} \over {{n^2} + 1}}\)
Phương pháp giải:
Sử dụng giới hạn kẹp đưa về giới hạn các dãy số đã biết và tính toán
Lời giải chi tiết:
Ta có, \(\left| {{u_n}} \right| = \left| {{{{{\left( { - 1} \right)}^n}} \over {{n^2} + 1}}} \right| = {1 \over {{n^2} + 1}}\). Đặt \({v_n} = {1 \over {{n^2} + 1}}\) (1)
Ta có \(\lim {v_n} = \lim {1 \over {{n^2} + 1}} = \lim {{{1 \over {{n^2}}}} \over {1 + {1 \over {{n^2}}}}} = 0\)
Do đó, \(\left| {{v_n}} \right|\) có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.
Từ (1) suy ra, \(\left| {{u_n}} \right| = {v_n} = \left| {{v_n}} \right|\)
Vậy, \(\left| {{u_n}} \right|\) cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là \(\lim {u_n} = 0\)
LG b
\({u_n} = {{{2^n} - n} \over {{3^n} + 1}}\)
Phương pháp giải:
Sử dụng giới hạn kẹp đưa về giới hạn các dãy số đã biết và tính toán.
Lời giải chi tiết:
Ta có: \(\left| {{u_n}} \right| = \left| {{{{2^n} - n} \over {{3^n} + 1}}} \right| < {{{2^n}} \over {{3^n} + 1}}=v_n\)
\(\lim \dfrac{{{2^n}}}{{{3^n} + 1}} = \lim \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^n}}}{{1 + \dfrac{1}{{{3^n}}}}}\) \( = \dfrac{0}{{1 + 0}} = 0\)
\( \Rightarrow {v_n} = \dfrac{{{2^n}}}{{{3^n} + 1}}\) nhỏ hơn một số dương bé tùy ý từ một số hạng nào đó trở đi
\( \Rightarrow \left| {{u_n}} \right| < {v_n}\) cũng nhỏ hơn một số dương bé tuy ý từ một số hạng nào đó trở đi
\( \Rightarrow \lim {u_n} = 0\) (theo định nghĩa)
Review (Units 5-8)
Chuyên đề 3. Một số vấn đề về pháp luật dân sự
Tải 10 đề kiểm tra 15 phút - Chương VI - Hóa học 11
Chủ đề 4: Ý tưởng, cơ hội kinh doanh và các năng lực cần thiết của người kinh doanh
CHƯƠNG 3. SINH TRƯỞNG VÀ PHÁT TRIỂN
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11