Đề bài
Chứng minh rằng bất đẳng thức sau đúng với mọi số tự nhiên \(n \ge 2\).
\(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} > \frac{{2n}}{{n + 1}}\)
Lời giải chi tiết
Ta chứng minh bất đẳng thức bằng phương pháp quy nạp
Với \(n = 2\) ta có \(1 + \frac{1}{2} = \frac{3}{2} > \frac{{2.2}}{{2 + 1}} = \frac{4}{3}\)
Vậy bất đẳng thức đúng với \(n = 2\)
Giải sử bất đẳng thức đúng với \(n = k\) nghĩa là có \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} > \frac{{2k}}{{k + 1}}\)
Ta chứng minh bất đẳng thức đúng với \(n = k + 1\) tức là chứng minh \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} + \frac{1}{{k + 1}} > \frac{{2(k + 1)}}{{k + 2}}\)
Sử dụng giả thiết quy nạp ta có: \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} + \frac{1}{{k + 1}} > \frac{{2k}}{{k + 1}} + \frac{1}{{k + 1}} = \frac{{2k + 1}}{{k + 1}}\)
Ta sẽ nhận được điều phải chứng minh nếu chứng minh được:
\(\frac{{2k + 1}}{{k + 1}} > \frac{{2(k + 1)}}{{k + 2}}\) (*)
Xét hiệu:
\(\begin{array}{l}\frac{{2k + 1}}{{k + 1}} - \frac{{2(k + 1)}}{{k + 2}} = \frac{{\left( {2k + 1} \right)\left( {k + 2} \right) - 2{{\left( {k + 1} \right)}^2}}}{{\left( {k + 1} \right)\left( {k + 2} \right)}}\\ = \frac{{2{k^2} + 5k + 2 - \left( {2{k^2} + 4k + 2} \right)}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \frac{k}{{\left( {k + 1} \right)\left( {k + 2} \right)}} > 0\end{array}\)
Do đó (*) được chứng minh.
Vậy bất đẳng thức đúng với mọi số tự nhiên n.
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 10
Huyện đường
MỞ ĐẦU. GIỚI THIỆU MỤC ĐÍCH HỌC TẬP MÔN VẬT LÍ
Đề thi học kì 1
Đề thi học kì 2
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10