Chuyên đề 2: Phương pháp quy nạp toán học và nhị thức Newton
Chuyên đề 2: Phương pháp quy nạp toán học và nhị thức Newton

Giải bài 5 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Chứng minh rằng bất đẳng thức sau đúng với mọi số tự nhiên \(n \ge 2\).

\(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} > \frac{{2n}}{{n + 1}}\)

Lời giải chi tiết

Ta chứng minh bất đẳng thức bằng phương pháp quy nạp

Với \(n = 2\) ta có \(1 + \frac{1}{2} = \frac{3}{2} > \frac{{2.2}}{{2 + 1}} = \frac{4}{3}\)

Vậy bất đẳng thức đúng với \(n = 2\)

Giải sử bất đẳng thức đúng với \(n = k\) nghĩa là có \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} > \frac{{2k}}{{k + 1}}\)

Ta chứng minh bất đẳng thức đúng với \(n = k + 1\) tức là chứng minh  \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} + \frac{1}{{k + 1}} > \frac{{2(k + 1)}}{{k + 2}}\)

Sử dụng giả thiết quy nạp ta có: \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} + \frac{1}{{k + 1}} > \frac{{2k}}{{k + 1}} + \frac{1}{{k + 1}} = \frac{{2k + 1}}{{k + 1}}\)

Ta sẽ nhận được điều phải chứng minh nếu chứng minh được:

\(\frac{{2k + 1}}{{k + 1}} > \frac{{2(k + 1)}}{{k + 2}}\) (*)

Xét hiệu:

\(\begin{array}{l}\frac{{2k + 1}}{{k + 1}} - \frac{{2(k + 1)}}{{k + 2}} = \frac{{\left( {2k + 1} \right)\left( {k + 2} \right) - 2{{\left( {k + 1} \right)}^2}}}{{\left( {k + 1} \right)\left( {k + 2} \right)}}\\ = \frac{{2{k^2} + 5k + 2 - \left( {2{k^2} + 4k + 2} \right)}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \frac{k}{{\left( {k + 1} \right)\left( {k + 2} \right)}} > 0\end{array}\)

Do đó (*) được chứng minh.

Vậy bất đẳng thức đúng với mọi số tự nhiên n.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved