Đề bài
Tìm đạo hàm của hàm số sau:
\(y = \sqrt {x + \sqrt {x + \sqrt x } } .\)
Lời giải chi tiết
\(\begin{array}{l}
y' = \frac{{\left( {x + \sqrt {x + \sqrt x } } \right)'}}{{2\sqrt {x + \sqrt {x + \sqrt x } } }}\\
= \frac{{1 + \left( {\sqrt {x + \sqrt x } } \right)'}}{{2\sqrt {x + \sqrt {x + \sqrt x } } }}\\
= \frac{{1 + \frac{{\left( {x + \sqrt x } \right)'}}{{2\sqrt {x + \sqrt x } }}}}{{2\sqrt {x + \sqrt {x + \sqrt x } } }}\\
= \frac{{1 + \frac{{1 + \frac{1}{{2\sqrt x }}}}{{2\sqrt {x + \sqrt x } }}}}{{2\sqrt {x + \sqrt {x + \sqrt x } } }}\\
= \frac{1}{{2\sqrt {x + \sqrt {x + \sqrt x } } }}\left[ {1 + \frac{1}{{2\sqrt {x + \sqrt x } }}\left( {1 + \frac{1}{{2\sqrt x }}} \right)} \right]
\end{array}\)
CHƯƠNG III. SINH TRƯỞNG VÀ PHÁT TRIỂN
Chủ đề 3. Rèn luyện bản thân
Chuyên đề 3. Một số vấn đề về pháp luật dân sự
CHƯƠNG 2. CẢM ỨNG
SBT Toán 11 - Kết nối tri thức với cuộc sống tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11