1. Nội dung câu hỏi
Giải mỗi phương trình sau:
a) \({\log _4}\left( {x - 4} \right) = - 2;\)
b) \({\log _3}\left( {{x^2} + 2x} \right) = 1;\)
c) \({\log _{25}}\left( {{x^2} - 4} \right) = \frac{1}{2};\)
d) \({\log _9}\left[ {{{\left( {2x - 1} \right)}^2}} \right] = 2;\)
e) \(\log \left( {{x^2} - 2x} \right) = \log \left( {2x - 3} \right);\)
g) \({\log _2}{x^2} + {\log _{\frac{1}{2}}}\left( {2x + 8} \right) = 0.\)
2. Phương pháp giải
- Tìm điều kiện cho phương trình.
- Giải phương trình bằng định nghĩa hàm số lôgarit hoặc đưa về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.
3. Lời giải chi tiết
a) Điều kiện: \(x > 4.\)
\({\log _4}\left( {x - 4} \right) = - 2 \Leftrightarrow x - 4 = {4^{ - 2}} \Leftrightarrow x = \frac{{65}}{{16}}\) (thỏa mãn).
b) Điều kiện: \({x^2} + 2x > 0 \Leftrightarrow \left[ \begin{array}{l}x > 0\\x < - 2\end{array} \right.\)
\({\log _3}\left( {{x^2} + 2x} \right) = 1 \Leftrightarrow {x^2} + 2x = 3 \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right)\) (thỏa mãn)
c) Điều kiện: \({x^2} - 4 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < - 2\end{array} \right.\)
\({\log _{25}}\left( {{x^2} - 4} \right) = \frac{1}{2} \Leftrightarrow {x^2} - 4 = {25^{\frac{1}{2}}} \Leftrightarrow {x^2} - 4 = 5 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 3\end{array} \right)\) (thỏa mãn)
d) Điều kiện: \({\left( {2x - 1} \right)^2} > 0 \Leftrightarrow x \ne \frac{1}{2}.\)
\({\log _9}\left[ {{{\left( {2x - 1} \right)}^2}} \right] = 2 \Leftrightarrow {\left( {2x - 1} \right)^2} = {9^2} \Leftrightarrow \left[ \begin{array}{l}2x - 1 = 9\\2x - 1 = - 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 4\end{array} \right)\) (thỏa mãn)
e) \(\log \left( {{x^2} - 2x} \right) = \log \left( {2x - 3} \right) \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 2x = 2x - 3\\2x - 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 4x + 3 = 0\\x > \frac{3}{2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\\x > \frac{3}{2}\end{array} \right. \Leftrightarrow x = 3.\)
g) Điều kiện: \(\left\{ \begin{array}{l}{x^2} > 0\\2x + 8 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 4\\x \ne 0\end{array} \right..\)
\(\begin{array}{l}{\log _2}{x^2} + {\log _{\frac{1}{2}}}\left( {2x + 8} \right) = 0 \Leftrightarrow {\log _2}{x^2} - {\log _2}\left( {2x + 8} \right) = 0 \Leftrightarrow {\log _2}\frac{{{x^2}}}{{2x + 8}} = 0\\ \Leftrightarrow \frac{{{x^2}}}{{2x + 8}} = 1 \Leftrightarrow {x^2} = 2x + 8 \Leftrightarrow {x^2} - 2x - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 2\end{array} \right.\left( {TM} \right).\end{array}\)
Phần một. Một số vấn đề về kinh tế - xã hội thế giới
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 11
ĐỀ CƯƠNG HỌC KÌ 1 - SINH 11
Test Yourself 1
Bài 15: Dẫn xuất halogen
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11