Bài 7 trang 109 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f

Bằng phương pháp tọa độ, làm thế nào để tính khoảng cách:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f

LG a

Từ một điểm đến một mặt phẳng.

Lời giải chi tiết:

Cho điểm A(x0,y0,z0),mp(α):Ax+By+Cz+D=0;

Khoảng cách từ điểm A đến mp(α) được xác định như sau:

\(d\left( {A,\left( \alpha  \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)

LG b

Từ một điểm đén một đường thẳng

Lời giải chi tiết:

Cho điểm A(x0,y0,z0) và đường thẳng \({d_1}:\left\{ \begin{array}{l}x = {x_1} + {a_1}t\\y = {y_1} + {b_1}t\\z = {z_1} + {c_1}t\end{array} \right.,t \in \mathbb{R}\)

Khoảng cách từ điểm A đến đường thẳng (d1) là: \(d\left( {A,\left( {{d_1}} \right)} \right) = \dfrac{{\left| {\left[ {\overrightarrow {A{M_1}} ,\overrightarrow {{u_1}} } \right]} \right|}}{{\left| {\overrightarrow {{u_1}} } \right|}}\)

Trong đó M1 (x1,y1,z1) là điểm trên (d1 ), \(\overrightarrow {{u_1}}  = \left( {{a_1};{b_1};{c_1}} \right)\) là vectơ chỉ phương của d1.

LG c

Giữa hai đường chéo nhau.

Lời giải chi tiết:

Cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = {x_1} + {a_1}t\\y = {y_1} + {b_1}t\\z = {z_1} + {c_1}t\end{array} \right.,t \in \mathbb{R}\) và \({d_2}:\left\{ \begin{array}{l}x = {x_2} + {a_2}t\\y = {y_2} + {b_2}t\\z = {z_2} + {c_2}t\end{array} \right.,t \in \mathbb{R}\) chéo nhau, khi đó khoảng cách giữa hai đường thẳng d1 và d2 là: \(d\left( {{d_1},{d_2}} \right) = \dfrac{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} } \right|}}{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]} \right|}}\)

Trong đó M1∈d1 và \(\overrightarrow {{u_1}} \) là vectơ chỉ phương của d1

M2 ∈d2 và \(\overrightarrow {{u_2}} \) là vectơ chỉ phương của d2

LG d

Giữa hai đường thẳng song song

Lời giải chi tiết:

Cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = {x_1} + {a_1}t\\y = {y_1} + {b_1}t\\z = {z_1} + {c_1}t\end{array} \right.,t \in \mathbb{R}\) và \({d_2}:\left\{ \begin{array}{l}x = {x_2} + {a_2}t\\y = {y_2} + {b_2}t\\z = {z_2} + {c_2}t\end{array} \right.,t \in \mathbb{R}\) song song với nhau, khi đó cách từ d1 đến d2 là khoảng cách từ 1 điểm trên d1 đến đường thẳng d2, chẳng hạn: \(d\left( {{d_1},{d_2}} \right) = d\left( {M,{d_2}} \right) = \dfrac{{\left| {\left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{u_2}} } \right]} \right|}}{{\left| {\overrightarrow {{u_2}} } \right|}}\)

Trong đó M1∈d1,M2∈d2, \(\overrightarrow {{u_2}} \) là vectơ chỉ phương của đường thẳng d2.

LG e

Giữa hai mặt song song.

Lời giải chi tiết:

Cho hai mặt phẳng (α) và (β) song song với nhau, khi đó khoảng cách giữa (α) và (β) là khoảng cách từ một điểm M bất kì thuộc (β)đến (α).

Chẳng hạn, M(x0,y0,z0)∈(β) và (α):Ax+By+Cz+D=0

Khi đó \(d\left( {\left( \alpha  \right),\left( \beta  \right)} \right) = d\left( {M,\left( \alpha  \right)} \right)\) \( = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)

LG f

Giữa đường và mặt phẳng song song với đường thẳng đó.

Lời giải chi tiết:

Giả sử đường thẳng d1 song song với mặt phẳng (α):Ax+By+Cz+D=0.

Khi đó khoảng cách từ d1 đến mặt phẳng (α) là khoảng cách từ 1 điểm M bất kì thuộc d1 đến mp(α)

Chẳng hạn M1 (x1,y1,z1 )∈d1, khi đó ta có:

\(d\left( {{d_1},\left( \alpha  \right)} \right) = d\left( {{M_1},\left( \alpha  \right)} \right)\) \( = \dfrac{{\left| {A{x_1} + B{y_1} + C{z_1} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved