Đề bài
Cho tam giác ABC vuông tại A có AB < AC, đường phân giác BD. Vẽ DE vuông góc với BC tại E.
a) Chứng minh trực tâm H của tam giác BAE nằm trên đường thẳng BD.
b) Chứng minh trực tâm của tam giác DAE nằm ngoài tam giác đó.
c) Tìm điều kiện của tam giác ABC để H cách đều các đỉnh của tam giác BAE.
Phương pháp giải - Xem chi tiết
- Chứng minh: BK là đường cao của tam giác BAE và B, K, D thẳng hàng nên trực tâm H của tam giác BAE nằm trên đường thẳng BD.
- Chứng minh: \(\widehat {ADE} > 90^\circ \) nên suy ra trực tâm của tam giác DAE nằm ngoài tam giác đó.
- Tam giác ABE có H là trực tâm, để H cách đều các đỉnh của tam giác BAE thì tam giác BAE là tam giác đều từ đó suy ra điều kiện của tam giác ABC.
Lời giải chi tiết
a) Gọi K là giao điểm của BD và AE.
Xét ∆BAD và ∆BED có:
\(\widehat {BAD} = \widehat {BED}\left( { = 90^\circ } \right)\)
BD là cạnh chung,
\(\widehat {ABD} = \widehat {EBD}\) (do BD là tia phân giác của góc ABC)
Do đó ∆BAD = ∆BED (cạnh huyền – góc nhọn).
Suy ra BA = BE (hai cạnh tương ứng).
Xét DABK và DEBK có:
BA = BE (chứng minh trên),
\(\widehat {ABK} = \widehat {EBK}\) (do BD là tia phân giác của góc ABC),
BK là cạnh chung
Do đó DABK =DEBK (c.g.c)
Suy ra \(\widehat {BKA} = \widehat {BKE}\) (hai góc tương ứng).
Mà \(\widehat {BKA} + \widehat {BKE} = 180^\circ \) (hai góc kề bù)
Nên \(\widehat {BKA} = \widehat {BKE} = \frac{{180^\circ }}{2} = 90^\circ \)
Hay BK ⊥ AE.
Do BK là đường cao của tam giác BAE và B, K, D thẳng hàng nên trực tâm H của tam giác BAE nằm trên đường thẳng BD.
Vậy trực tâm H của tam giác BAE nằm trên đường thẳng BD.
b)Ta có \(\widehat {ADE} + \widehat {EDC} = 180^\circ \) (hai góc kề bù)
Mà \(\widehat {EDC} < 90^\circ \) (vì tam giác ECD vuông tại E nên góc EDC là góc nhọn)
Suy ra \(\widehat {ADE} > 90^\circ \)
Do góc ADE là góc tù nên trực tâm của tam giác DAE nằm ngoài tam giác đó.
Vậy trực tâm của tam giác DAE nằm ngoài tam giác đó.
c) Xét tam giác ABE có H là trực tâm, để H cách đều các đỉnh của tam giác BAE thì tam giác BAE là tam giác đều
Do đó \(\widehat {ABE} = 60^\circ \) hay \(\widehat {ABC} = 60^\circ \) Vậy điều kiện để H cách đều các đỉnh của tam giác BAE là tam giác ABC vuông tại A có \(\widehat {ABC} = 60^\circ \).
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 7
Bài 12
Đề thi giữa kì 2
Revision (Units 1-6)
Đề thi giữa kì 2
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7