Bài tập trắc nghiệm trang 175, 176 SBT đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71

Chọn đáp án đúng:

Lựa chọn câu hỏi để xem giải nhanh hơn
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71

4.62

Chọn mệnh đề đúng trong các mệnh đề sau:

A. Nếu lim|un| = +∞ thì lim un = +∞;

B. Nếu lim|un| = +∞ thì lim un = −∞;

C. Nếu lim un = 0 thì lim|un| = 0;

D. Nếu lim un = −a thì lim|un| = a.

Lời giải chi tiết:

Cách 1: Ta có ||un|| = |un|. Do đó, nếu (un) có giới hạn là 0 thì (|un|) cũng có giới hạn 0.

Cách 2: (loại trừ các phương án khác bằng cách phản ví dụ): Chẳng hạn, un = -n cho phép loại trừ phương án A, un = n cho phép loại trừ phương án B, un = 1 và a = -1 cho phép loại trừ phương án D.

Chọn đáp án: C

4.63

\(\lim \dfrac{{{2^n} - {3^n}}}{{{2^n} + 1}}\) bằng:

A. 1          B. -∞          C. 0          D. +∞

Phương pháp giải:

Tính giới hạn bằng cách chia tử số và mẫu số cho 3n.

Lời giải chi tiết:

\(\lim \dfrac{{{2^n} - {3^n}}}{{{2^n} + 1}}\)\( = \lim \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^n} - 1}}{{{{\left( {\dfrac{2}{3}} \right)}^n} + \dfrac{1}{{{3^n}}}}}\)

Vì \(\lim \left[ {{{\left( {\dfrac{2}{3}} \right)}^n} - 1} \right] = 0 - 1 =  - 1 < 0\) và \(\left\{ \begin{array}{l}\lim \left[ {{{\left( {\dfrac{2}{3}} \right)}^n} + \dfrac{1}{{{3^n}}}} \right] = 0\\{\left( {\dfrac{2}{3}} \right)^n} + \dfrac{1}{{{3^n}}} > 0\end{array} \right.\) nên \(\lim \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^n} - 1}}{{{{\left( {\dfrac{2}{3}} \right)}^n} + \dfrac{1}{{{3^n}}}}} =  - \infty \)

Vậy \(\lim \dfrac{{{2^n} - {3^n}}}{{{2^n} + 1}} =  - \infty \)

Chọn đáp án: B

4.64

\(\lim \left( {\sqrt {{n^2} - n + 1}  - n} \right)\) bằng:

A. 0          B. 1          C. -1/2          D. -∞

Phương pháp giải:

Tính giới hạn bằng cách nhân và chia biểu thức liên hợp.

Lời giải chi tiết:

\(\lim \left( {\sqrt {{n^2} - n + 1}  - n} \right)\)

\(\begin{array}{l} = \lim \dfrac{{\left( {\sqrt {{n^2} - n + 1}  - n} \right)\left( {\sqrt {{n^2} - n + 1}  + n} \right)}}{{\sqrt {{n^2} - n + 1}  + n}}\\ = \lim \dfrac{{{n^2} - n + 1 - {n^2}}}{{\sqrt {{n^2} - n + 1}  + n}}\\ = \lim \dfrac{{ - n + 1}}{{\sqrt {{n^2} - n + 1}  + n}}\\ = \lim \dfrac{{n\left( { - 1 + \dfrac{1}{n}} \right)}}{{n\sqrt {1 - \dfrac{1}{n} + \dfrac{1}{{{n^2}}}}  + n}}\\ = \lim \dfrac{{ - 1 + \dfrac{1}{n}}}{{\sqrt {1 - \dfrac{1}{n} + \dfrac{1}{{{n^2}}}}  + 1}}\\ = \dfrac{{ - 1 + 0}}{{\sqrt {1 - 0 + 0}  + 1}}\\ =  - \dfrac{1}{2}\end{array}\)

Chọn đáp án: C

4.65

\(\mathop {\lim }\limits_{x \to  - \infty } \left( {x - {x^3} + 1} \right)\) bằng:

A. 1          B. -∞          C. 0          D. +∞

Phương pháp giải:

Tính trực tiếp giới hạn.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - \infty } \left( {x - {x^3} + 1} \right)\) \( = \mathop {\lim }\limits_{x \to  - \infty } {x^3}\left( {\dfrac{1}{{{x^2}}} - 1 + \dfrac{1}{{{x^3}}}} \right)\)

Vì \(\mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty \) và \( = \mathop {\lim }\limits_{x \to  - \infty } \left( {\dfrac{1}{{{x^2}}} - 1 + \dfrac{1}{{{x^3}}}} \right) =  - 1 < 0\) nên \(\mathop {\lim }\limits_{x \to  - \infty } {x^3}\left( {\dfrac{1}{{{x^2}}} - 1 + \dfrac{1}{{{x^3}}}} \right) =  + \infty \)

Vậy \(\mathop {\lim }\limits_{x \to  - \infty } \left( {x - {x^3} + 1} \right) =  + \infty \)

Chọn đáp án: D

4.66

\(\mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{x - 1}}{{x - 2}}\) bằng:

A. -∞          B. 1/4          C. 1          D. +∞

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 1} \right) = 2 - 1 = 1 > 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 2} \right) = 0\\x - 2 < 0,\forall x < 2\end{array} \right.\) nên \(\mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{x - 1}}{{x - 2}} =  - \infty \)

Chọn đáp án: A

4.67

Cho hàm số \(f\left( x \right) = \dfrac{{2x - 1}}{{3 + 3x}}\), khi đó \(\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right)\) bằng:

A. +∞          B. 2/3          C. 1          D. -∞

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{x \to  - {1^ + }} \left( {2x - 1} \right) = 2.\left( { - 1} \right) - 1 =  - 3 < 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to  - {1^ + }} \left( {3 + 3x} \right) = 0\\3 + 3x > 0,\forall x >  - 1\end{array} \right.\) nên \(\mathop {\lim }\limits_{x \to  - {1^ + }} \dfrac{{2x - 1}}{{3 + 3x}} =  - \infty \)

Chọn đáp án: D

4.68

\(\mathop {\lim }\limits_{x \to  - {3^ - }} \dfrac{{{x^2} - 6}}{{9 + 3x}}\) bằng:

A. 1/3          B. -∞          C. 1/6          D. +∞

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{x \to  - {3^ - }} \left( {{x^2} - 6} \right) = {\left( { - 3} \right)^2} - 6 = 3 > 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to  - {3^ - }} \left( {9 + 3x} \right) = 0\\9 + 3x < 0,\forall x <  - 3\end{array} \right.\) nên \(\mathop {\lim }\limits_{x \to  - {3^ - }} \dfrac{{{x^2} - 6}}{{9 + 3x}} =  - \infty \)

Chọn đáp án: B

4.69

\(\mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {4{x^2} - x + 1} }}{{x + 1}}\) bằng:

A. 2          B. -2          C. 1          D. -1

Phương pháp giải:

Đưa x2 ra khỏi căn ở tử số.

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {4{x^2} - x + 1} }}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {{x^2}\left( {4 - \dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)} }}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\left| x \right|\sqrt {\left( {4 - \dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)} }}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{ - x\sqrt {\left( {4 - \dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)} }}{{x\left( {1 + \dfrac{1}{x}} \right)}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{ - \sqrt {\left( {4 - \dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)} }}{{1 + \dfrac{1}{x}}}\\ = \dfrac{{ - \sqrt {4 - 0 + 0} }}{{1 + 0}}\\ =  - 2\end{array}\)

Chọn đáp án: B

4.70

Cho hàm số f(x) xác định trên đoạn [a; b]

Trong các mệnh đề sau, mệnh đề nào đúng?

A. Nếu hàm số f(x) liên tục trên đoạn [a; b] và f(a).f(b) > 0 thì phương trình f(x) = 0 không có nghiệm trong khoảng (a; b)

B. Nếu f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a; b)

C. Nếu phương trình f(x) = 0 có nghiệm trong khoảng (a; b) thì hàm số f(x) phải liên tục trên khoảng (a; b)

D. Nếu f(x) hàm số liên tục, tăng trên đoạn [a; b] và f(a).f(b) > 0 thì phương trình f(x) = 0 không thể có nghiệm trong khoảng (a; b)

Lời giải chi tiết:

Đáp án A: sai vì ta chưa thể kết luận gì về nghiệm khi f(a).f(b) > 0.

Đáp án B: sai vì thiếu điều kiện f(x) liên tục trên (a;b).

Đáp án C: sai vì vẫn có thể xảy ra trường hợp f(x) gián đoạn tại một điểm nào đó trong khoảng (a;b).

Đáp án D: đúng.

Ta có: \(f\left( a \right).f\left( b \right) > 0\) \( \Leftrightarrow \left[ \begin{array}{l}f\left( a \right) > 0,f\left( b \right) > 0\\f\left( a \right) < 0.f\left( b \right) < 0\end{array} \right.\)

Do hàm số f(x) tăng trên [a;b] nên \(f\left( a \right) \le f\left( x \right) \le f\left( b \right)\).

Nếu \(f\left( a \right) > 0,f\left( b \right) > 0\) thì \(0 < f\left( a \right) \le f\left( x \right)\) \( \Rightarrow f\left( x \right) > 0,\forall x \in \left[ {a;b} \right]\) hay phương trình vô nghiệm trong \(\left[ {a;b} \right]\).

Nếu \(f\left( a \right) < 0,f\left( b \right) < 0\) thì \(f\left( x \right) \le f\left( b \right) < 0\) \( \Rightarrow f\left( x \right) < 0,\forall x \in \left[ {a;b} \right]\) hay phương trình vô nghiệm trong \(\left[ {a;b} \right]\).

Vậy trong cả hai TH thì f(x) đều không có nghiệm trong (a;b).

Chọn đáp án: D

4.71

Cho phương trình 2x4 - 5x2 + x + 1 = 0. (1)

Trong các mệnh đề sau, mệnh đề nào đúng ?

A. Phương trình (1) không có nghiệm trong khoảng (-1; 1);

B. Phương trình (1) không có nghiệm trong khoảng (-2; 0);

C. Phương trình (1) chỉ có một nghiệm trong khoảng (-2; 1) ;

D. Phương trình (1) có ít nhất hai nghiệm trong khoảng (0; 2)

Lời giải chi tiết:

Đặt f(x) = 2x4 - 5x2 + x + 1. Tính f(-1), f(0), f(1), f(2) và nhận xét dấu của chúng để kết luận.

Cách giải:

Xét f(x) = 2x4 - 5x2 + x + 1 là hàm số liên tục trên \(\mathbb{R}\) nên liên tục trên các khoảng \(\left( { - 1;0} \right),\left( {0;1} \right),\left( {1;2} \right)\).

Ta có:

\(\begin{array}{l}f\left( { - 1} \right) =  - 3\\f\left( 0 \right) = 1\\f\left( 1 \right) =  - 1\\f\left( 2 \right) = 15\end{array}\)

Do đó:

+) \(f\left( { - 1} \right).f\left( 0 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm trong \(\left( { - 1;0} \right)\)

Loại A, B.

+) \(f\left( 0 \right).f\left( 1 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm trong \(\left( {0;1} \right)\)

Do đó phương trình \(f\left( x \right) = 0\) có ít nhất hai nghiệm trong \(\left( { - 1;1} \right) \subset \left( { - 2;1} \right)\).

Loại C.

+) \(f\left( 1 \right).f\left( 2 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm trong \(\left( {1;2} \right)\).

Do đó phương trình \(f\left( x \right) = 0\) có ít nhất hai nghiệm trong \(\left( {0;2} \right)\).

Chọn đáp án: D

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi