Lý thuyết Tính chất hai đường thẳng song song

- Trong không gian, qua một điểm nằm ngoài một đường thẳng có một và chỉ một đường thẳng song song với đường thẳng đã cho.

- Nếu ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau.

- Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng ( nếu có) cũng song song với hai đường thẳng đó ( hoặc trùng với một trong hai đường thẳng đó).

- Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau

Cách chứng minh hai đường thẳng \(a\) và \(b\) chéo nhau:

Dùng phương pháp phản chứng: Giả sử \(a, b\) không chéo nhau - tức là \(a\) và \(b\) cùng nằm trong mặt phẳng \((P)\), lập luận dẫn tới mâu thuẫn vậy \(a\) và \(b\) chéo nhau.

Cách chứng minh hai đường thẳng \(a\) và \(b\) song song:

Sử dụng các tính chất nêu trên hoặc đưa về một mặt phẳng rồi sử dụng các tính chất trong hình học phẳng: Tính chất hình bình hành; Đường trung bình của tam giác; Định lí Ta-let....

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved