CHƯƠNG I. ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG

Thử tài bạn 2 trang 124 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho định lí “Nếu hai đường thẳng xx’ và yy’ cắt nhau tại O và góc xOy vuông\(\left( {\widehat {xOy} = {{90}^o}} \right)\) thì các góc yOx’, x’Oy’, y’Ox đều là góc vuông”.

a) Hãy vẽ hình thể hiện định lí trên.

b) Viết giả thiết và kết luận của định lí.

c) Điền vào chỗ trống (….) trong các câu sau:

1) \(\widehat {xOy} + \widehat {x'Oy} = {180^o}\) (vì……)

2) \({90^o} + \widehat {x'Oy} = {180^o}\) (theo giả thiết và căn cứ vào…….)

3) \(\widehat {x'Oy} = {90^o}\)  (căn cứ vào…..)

4) Do \(\widehat {x'Oy'} = {90^o}\)  (vì….)

5) \(\widehat {x'Oy'} = {90^o}\) (căn cứ vào……)

6) Do \(\widehat {y'Ox} = \widehat {x'Oy}\)  (vì…..)

7) \(\widehat {y'Ox} = {90^o}\)  (căn cứ vào……..)

Lời giải chi tiết

a)

 

b)

GT

xx’ cắt yy’ tại O, \(\widehat {xOy} = {90^0}\)

KL

\(\widehat {yOx'} = {90^0},\widehat {x'Oy'} = {90^0},\widehat {y'{\rm{Ox}}} = {90^0}\)

 

c)\(*\widehat {xOy} + \widehat {x'Oy} = {180^0}\)  (vì hai góc này kề bù)

\(*{90^0} + \widehat {x'Oy} = {180^0}\)  (theo giả thiết và căn cứ 1)

\(*\widehat {x'Oy} = {90^0}\)  (căn cứ vào 2)

*Do \(\widehat {x'Oy'} = \widehat {xOy}\)  (vì cùng nằm 900)

\(*\widehat {x'Oy'} = {90^0}\)  (căn cứ vào 4 và giả thiết)

*Do \(\widehat {y'{\rm{Ox}}} = \widehat {x'Oy}\)  (vì góc y’Õ và x’Oy đối đỉnh)

\(*\widehat {y'{\rm{Ox}}} = {90^0}\)  (căn cứ vào 3 và 6)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved