/

/

[Tổng hợp] Kiến thức về đạo hàm và dạng bài liên quan

Admin FQA

14/03/2024, 15:41

604

 

Trong toán học, đạo hàm (tiếng Anh: derivative) của một hàm số là một đại lượng mô tả sự biến thiên của hàm tại một điểm nào đó. Đạo hàm là một khái niệm cơ bản trong giải tích. Đạo hàm còn xuất hiện trong nhiều khái niệm vật lí, chẳng hạn đạo hàm biểu diễn vận tốc tức thời của một điểm chuyển động, khi mà công cụ này giúp đo lường tốc độ mà đối tượng đó thay đổi tại một thời điểm xác định. Vì vậy, trong bài viết này chúng ta cùng nhau nhắc lại khái niệm, các quy tắc tính đạo hàm, cũng như ý nghĩa của đạo hàm và một số dạng bài tập liên quan đến đạo hàm nhé.

Cho hàm số $y=f(x)$ xác định trên khoảng $(a ; b)$ và điểm $x_0 \in(a ; b)$.

Nếu tồn tại giới hạn hữu hạn $\lim _{x \rightarrow x_0} \frac{f(x)-f\left(x_0\right)}{x-x_0}$ thì giới hạn đó được gọi là đạo hàm của hàm số $y=f(x)$ tại $x_0$ và được kí hiệu là $f^{\prime}\left(x_0\right)$ hoặc $y_{x_0}^{\prime}$.

Nhận xét: Trong định nghĩa trên, ta đặt:

$\Delta x=x-x_0$ và gọi $\Delta x$ là số gia của biển số tại điểm $x_0$;

$\Delta y=f\left(x_0+\Delta x\right)-f\left(x_0\right)$ và gọi $\Delta y$ là số gia của hàm số ứng với số gia $\Delta x$ tại điếm $x_0$.

Khi đó, ta có: $f^{\prime}\left(x_0\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0+\Delta x\right)-f\left(x_0\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$.

 

Cho hàm số $y=f(x)$ xác định trên khoảng $(a ; b)$ và điểm $x_0$ thuộc khoảng đố. Để tính đạo hàm $f^{\prime}\left(x_0\right)$ của hàm số $y=f(x)$ tại $x_0$, ta lần lượt thực hiện ba bước sau:

Bước 1. Xét $\Delta x$ là số gia của biến số tại điểm $x_0$. Tính $\Delta y=f\left(x_0+\Delta x\right)-f\left(x_0\right)$.

Bước 2. Rút gọn tỉ số $\frac{\Delta y}{\Delta x}$.

Bước 3. Tính $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$.

Kết luận: Nếu $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=a$ thì $f^{\prime}\left(x_0\right)=a$.

 

Trong mục này, chúng mình cùng nhắc lại đạo hàm của tổng, hiệu, tích, thương; bảng đạo hàm của một số hàm sơ cấp cơ bản và hàm hợp. Ngoài ra, chúng mình còn được mở rộng thêm về đạo hàm của các phân thức hữu tỉ và đạo hàm cấp cao nữa nhé.

a) Đạo hàm của tổng, hiệu, tích, thương

Giả sử $f=f(x), g=g(x)$ là các hàm số có đạo hàm tại điểm $x$ thuộc khoảng xác định. Ta có:

$(f + g)^{\prime} =f^{\prime}+ g^{\prime}$ ; $(f - g)^{\prime} = f^{\prime} - g^{\prime}$;

$(f . g)^{\prime}= f^{\prime}.g + f g^{\prime}$ ; $\left(\dfrac{f}{g}\right)’=\dfrac{f’ g-f g’}{g^2}, (g=g(x) \neq 0) .$

b) Bảng đạo hàm của một số hàm sơ cấp cơ bản và hàm hợp

c) Đạo hàm của các phân thức hữu tỉ

d) Đạo hàm cấp cao

- Đạo hàm lũy thừa: $\left(x^m\right)^{(n)}= \begin{cases}m(m-1)(m-2) \ldots(m-n+1) x^{m-n} & (m \geq n) \\ 0 & (m<n)\end{cases}$

- Đạo hàm của hàm số mũ và logarit:

$\left(\log _a x\right)^{(n)}=(-1)^{n-1} \frac{(n-1) !}{\ln a} \frac{1}{x^n}$

$(\ln x)^{(n)}=(-1)^{n-1}(n-1) ! x^{-n}$

$\left(e^{k x}\right)^{(n)}=k^n e^{k x}$

$\left(a^x\right)^{(n)}=(\ln a)^n a^x$

- Đạo hàm của hàm số lượng giác:

$(\sin a x)^{(n)}=a^n \sin \left(a x+\frac{n \pi}{2}\right)$

$(\cos a x)^{(n)}=a^n \cos \left(a x+\frac{n \pi}{2}\right)$

- Đạo hàm của phân thức hữu tỉ: $\left(\frac{1}{a x+b}\right)^{(n)}=(-1)^n a^n n ! \frac{1}{(a x+b)^{n+1}}$

 

a) Ý nghĩa vật lý của đạo hàm

Xét chuyển động thẳng xác định bởi phương trình $s=s(t)$, với $s=s(t)$ là một hàm số có đạo hàm. Vận tốc tức thời của chuyển động tại thời điểm $t_0$ là đạo hàm của hàm số tại $t_0: v\left(t_0\right)=s^{\prime}\left(t_0\right)$.

b) Ý nghĩa hình học của đạo hàm

- Đạo hàm của hàm số $y=f(x)$ tại điểm $x_0$ là hệ số góc của tiếp tuyến của đồ thị hàm số đó tại điểm $M_0\left(x_0 ; f\left(x_0\right)\right)$.

- Phương trình tiếp tuyến của đồ thị hàm số $y=f(x)$ tại điểm $M_0\left(x_0 ; f\left(x_0\right)\right)$ là $y=f^{\prime}\left(x_0\right)\left(x-x_0\right)+f\left(x_0\right)$.

c) Ý nghĩa cơ học của đạo hàm cấp hai

Đầu tiên chúng ta cần nhắc lại định nghĩa đạo hàm cấp hai nhé.

Giả sử hàm số $y=f(x)$ có đạo hàm tại mỗi điểm $x \in(a ; b)$. Nếu hàm số $y^{\prime}=f^{\prime}(x)$ lại có đạo hàm tại $x$ thì ta gọi đạo hàm của $y^{\prime}$ là đạo hàm cấp hai của hàm số $y-f(x)$ tại $x$, kí hiệu là $y^{\prime}$ hoặc $f^{\prime \prime}(x)$.

Ý nghĩa cơ học của đạo hàm cấp hai: 

Một chuyển động có phương trình $s=f(t)$ thì đạo hàm cấp hai (nếu có) của hàm số $f(t)$ là gia tốc tức thời của chuyền động. Ta có:   $a(t)=f^{\prime \prime}(t)$.

 

 

Dạng 1. Tính đạo hàm bằng định nghĩa 

Phương pháp giải:

- Cách 1: Thực hiện 3 bước đã được đề cập ở mục 2.

- Cách 2: Để tính đạo hàm $f^{\prime}\left(x_0\right)$ của hàm số $y=f(x)$ tại $x_0 \in(a ; b)$ ta có thể thực hiện như sau:

+ Bước 1: Tính $\mathrm{f}(\mathrm{x})-\mathrm{f}\left(\mathrm{x}_0\right)$.

+ Bước 2: Lập và rút gọn tỉ số $\frac{f(x)-f\left(x_0\right)}{x-x_0}$ với $\mathrm{x} \in(\mathrm{a} ; \mathrm{b}), \mathrm{x} \ne \mathrm{x}_0$.

+ Bước 3: Tìm giới hạn $\lim _{x \rightarrow x_0} \frac{f(x)-f\left(x_0\right)}{x-x_0}$.

Ví dụ minh họa: 

Tính đạo hàm của hàm số $f(x)=x+1$ tại $x_0=6$ bằng định nghĩa.

Lời giải

Cách 1:

Xét $\Delta x$ là số gia của biến số tại điểm $x_0=6$.

Ta có $\Delta y=f(6+\Delta x)-f(6)=7+\Delta x-7=\Delta x$.

Suy ra $\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=1$.

Ta thấy $\lim _{\Delta \mathrm{x} \rightarrow 0} \frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\lim _{\Delta \mathrm{x} \rightarrow 0} 1=1$.

Vậy $f(6)=1$.

Cách 2:

Ta có: $f(x)-f(6)=x+1-7 = x - 6$. 

Với $\mathrm{x} \neq 6, \frac{f(x)-f(6)}{x-6}=\frac{x-6}{x-6}=1$.

 

$\lim _{x \rightarrow 6} \frac{f(x)-f(6)}{x-6}=\lim _{x \rightarrow 6}(1)=1$. 

Vậy $f^{\prime}(6)=1$.

 

Dạng 2. Sử dụng quy tắc tính đạo hàm để tính đạo hàm 

Phương pháp giải:

Sử dụng các quy tắc tính đạo hàm được đề cập ở mục 3.

Ví dụ minh họa:

Tính đạo hàm của hàm số $y=2 x^4-\frac{1}{3} x^3+2 \sqrt{x}-5$.

Lời giải:

$y^{\prime}=8 x^3-x^2+\frac{1}{\sqrt{x}}$.

 

Dạng 3. Bài toán chứng minh, giải phương trình, bất phương trình 

Phương pháp giải:

- Tính $y^{\prime}$.

- Dùng các kiến thức đã học để rút gọn, biến đổi về phương trình hoặc bất phương trình đã biết cách giải như phương trình bậc nhất, bậc hai, bậc ba (sử dụng máy tính cầm tay).

- Đối với bài toán chứng minh bất đẳng thức thì ta biến đổi vế phức tạp thành vế đơn giản hoặc biến đồi cả hai vế cùng bằng một biểu thức trung gian.

Ngoài ra, chúng mình cần nhớ thêm một số bài toán về phương trình và bất phương trình bậc hai sau.

Một số bài toán tìm nghiệm của phương trình bậc hai thỏa mãn điều kiện cho trước.

Cho phương trình $a x^2+b x+c=0(*)$ vơi $a \neq 0$.

1. Nếu phương trình $\left(^*\right)$ có hai nghiệm $x_1, x_2$ thì $\left\{\begin{array}{l}S=x_1+x_2=-\frac{b}{a} \\ P=x_1 x_2=\frac{c}{a}\end{array}\right.$.

2. Phương trình $\left(^8\right)$ có hai nghiệm trái dấu khi và chỉ khi $a c<0$.

3. Phương trình (*) có hai nghiệm dương phân biệt khi và chỉ khi $\left\{\begin{array}{l}\Delta>0 \\ S=-\frac{b}{a}>0 \\ P=\frac{c}{a}>0\end{array}\right.$.

4. Phương trình (*) có hai nghiệm âm phân biệt khi và chỉ khi $\left\{\begin{array}{l}\Delta>0 \\ S=-\frac{b}{a}<0 \\ P=\frac{c}{a}>0\end{array}\right.$.

Một số bài toán về bất phương trình bậc hai thường gặp.

Cho tam thức bậc hai $f(x)=a x^2+b x+c=0$ với $a \neq 0$.

1. $f(x)>0, \forall x \in \mathbb{R} \Leftrightarrow\left\{\begin{array}{l}a>0 \\ \Delta<0\end{array}\right.$.

2. $f(x) \geq 0, \forall x \in \mathbb{R} \Leftrightarrow\left\{\begin{array}{l}a > 0 \\ \Delta \leq 0\end{array}\right.$.

3. $f(x)<0, \forall x \in \mathbb{R} \Leftrightarrow\left\{\begin{array}{l}a<0 \\ \Delta<0\end{array}\right.$.

4. $f(x) \leq 0, \forall x \in \mathbb{R} \Leftrightarrow\left\{\begin{array}{l}a<0 \\ \Delta \leq 0\end{array}\right.$.

Ví dụ minh họa:

Cho hàm số $f(x)=\frac{1}{3}\left(m^2-m-6\right) x^3-(m+2) x^2-4 x+m$. Tìm tham số $m$ sao cho $f^{\prime}(x)<0, \forall x \in \mathbb{R}$.

Lời giải

Ta có $f^{\prime}(x)=\left(m^2-m-6\right) x^2-2(m+2) x-4$.

- TH1: $m^2-m-6=0 \Leftrightarrow\left[\begin{array}{l}m=-2 \\ m=3\end{array}\right.$.

Nếu $m=-2$ thì $f^{\prime}(x)=-4<0, \forall x \in \mathbb{R}$. Do đó, $m=-2$ thỏa mãn bài toán.

Nếu $m=3$ thì $f^{\prime}(x)=-10 x-4<0$ là nhị thức bậc nhất nên $f^{\prime}(x)$ không lớn hơn 0 với mọi $x \in \mathbb{R}$. Do đó, $m=3$ không thỏa mãn bài toán.

- TH2: $m^2-m-6 \neq 0 \Leftrightarrow\left\{\begin{array}{l}m \neq-2 \\ m \neq 3\end{array}\right.$. Khi đó,

$f^{\prime}(x)<0, \forall x \in \mathrm{R} \Leftrightarrow\left(m^2-m-6\right) x^2-2(m+2) x-4<0, \forall x \in \mathrm{R}$

$ \Leftrightarrow\left\{\begin{array} { l } { a < 0 } \\{ \Delta ^ { \prime } < 0 }\end{array} \Leftrightarrow \left\{\begin{array} { l } { m ^ { 2 } - m - 6 < 0 } \\{ ( m + 2 ) ^ { 2 } + 4 ( m ^ { 2 } - m - 6 ) < 0 }\end{array} \Leftrightarrow \left\{\begin{array} { l } { m ^ { 2 } - m - 6 < 0 } \\{ 5 m ^ { 2 } - 2 0 < 0 }\end{array} \Leftrightarrow \left\{\begin{array}{l}-2<m<3 \\-2<m<2\end{array} \Leftrightarrow-2<m<2 .\right.\right.\right.\right.$

Vậy, giá trị $m$ cần tìm là $-2 \leq m < 2$.

 

Dạng 4. Chứng minh đẳng thức, giải phương trình chứa đạo hàm

Phương pháp giải:

- Tính đạo hàm của hàm số đã cho.

- Thay $y, y^{\prime}$ vào biểu thức để biến đồi chứng minh hoặc giải phương trình liên quan.

Ví dụ minh họa:

Cho hàm số $y=\tan x$. Chứng minh $y^{\prime}-y^2-1=0$.

Lời giải

 

Điều kiện xác định của hàm số là $x \neq \frac{\pi}{2}+k \pi, k \in Z$

Ta có $y^{\prime}=\frac{1}{\cos^2 x}=1+\tan ^2 x$

Khi đó $y^{\prime}-y^2-1=1+\tan^2 x-\tan ^2 x-1=0$

Ta có điều phải chứng minh.

Dạng 5. Giải bài toán thực tiễn 

Phương pháp giải:

Vận dụng các công thức đạo hàm vào giải quyết một số bài toán tìm vận tốc tức thời, tìm gia tốc tức thời, tìm cường độ tức thời, tìm thời gian, vận tốc nhỏ nhất, vận tốc lớn nhất của vật dựa vào phương trình chuyển động s(t), phương trình điện lượng q(t) đã cho ở đề bài.

Lưu ý

- Vận tốc tức thời v(t) = s'(t).

- Gia tốc tức thời a(t) = v'(t) = s''(t).

- Cường độ tức thời I(t) = Q'(t).

Ví dụ minh họa:

Chuyển động của một vật có phương trình \(s(t) = \sin \left( {0,8\pi t + \frac{\pi }{3}} \right)\), ở đó s tính bằng centimét và thời gian t tính bằng giây. Tại các thời điểm vận tốc bằng 0 , giá trị tuyệt đối của gia tốc của vật gần với giá trị nào sau đây nhất?

A. \(4,5\;{\rm{cm}}/{{\rm{s}}^2}\).                                                

B. \(5,5\;{\rm{cm}}/{{\rm{s}}^2}\).

C. \(6,3\;{\rm{cm}}/{{\rm{s}}^2}\).                                                

D. \(7,1\;{\rm{cm}}/{{\rm{s}}^2}\).

Lời giải

Ta có

\(\begin{array}{l}v\left( t \right) = s'\left( t \right) = 0,8\pi \cos \left( {0,8\pi t + \frac{\pi }{3}} \right);\\a\left( t \right) = s''\left( t \right) =  - 0,8\pi .0,8\pi \sin \left( {0,8\pi t + \frac{\pi }{3}} \right) =  - 0,64{\pi ^2}\sin \left( {0,8\pi t + \frac{\pi }{3}} \right)\end{array}\)

 \(\begin{array}{l}v\left( t \right) = 0 \Leftrightarrow 0,8\pi \cos \left( {0,8\pi t + \frac{\pi }{3}} \right) = 0\\ \Leftrightarrow 0,8\pi t + \frac{\pi }{3} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\\ \Leftrightarrow 0,8\pi t = \frac{\pi }{6} + k\pi  \Leftrightarrow t = \frac{5}{{24}} + \frac{{5k}}{4}\end{array}\)

Thời điểm vận tốc bằng 0 giá trị tuyệt đối của gia tốc của vật là

\(\begin{array}{l}\left| {a\left( {\frac{5}{{24}} + \frac{{5k}}{4}} \right)} \right| = \left| { - 0,64{\pi ^2}\sin \left( {0,8\pi \left( {\frac{5}{{24}} + \frac{{5k}}{4}} \right) + \frac{\pi }{3}} \right)} \right|\\ = 0,64{\pi ^2}\left| {\sin \left( {\frac{\pi }{2} + k\pi } \right)} \right| = 0,64{\pi ^2} \approx 6,32\end{array}\)

Đáp án C.

Dạng 6. Viết phương trình tiếp tuyến 

Bài toán 1. Viết phương trình tiếp tuyến của đồ thị hàm số $y=f(x)$ tại điểm $M\left(x_0, y_0\right)$

Phương pháp giải:

Bước 1: Tính đạo hàm $y^{\prime}=f^{\prime}(x)$. Suy ra hệ số góc tiếp tuyến $k=y^{\prime}\left(x_0\right)=f^{\prime}\left(x_0\right)$.

Bước 2: Phương trình tiếp tuyến của đồ thị hàm số tại $M\left(x_0, y_0\right)$ có dạng $d: y=k\left(x-x_0\right)+y_0$.

- Nếu đề bài yêu cầu viết phương trình tiếp tuyến tại điểm có hoành độ $x_0$ thì khi đó ta tìm $y_0$ bằng cách thế vào hàm số ban đầu, tức $y_0=f\left(x_0\right)$. Tương tự khi đề cho $y_0$.

- Nếu đề bài yêu cầu viết phương trình tiếp tuyến tại các giao điểm đồ thị $(C): y=f(x)$ và đường thẳng $d: y=a x+b$. Khi đó các hoành độ tiếp điểm là nghiệm của phương trình hoành độ giao điểm giữa $d$ và $(C)$. Đặc biệt phương trình của $Ox: y=0$, trục tung $Oy: x=0$.

- Nếu đề bài cho hệ số góc tiếp tuyến là $k$, ta làm theo các bước sau:

  • Bước 1: Gọi $M\left(x_0 ; y_0\right)$ là tiếp điểm và tính $y^{\prime}=f^{\prime}(x)$.
  • Bước 2: Ta có: $k=f^{\prime}\left(x_0\right)$ và giải phương trình này ta sẽ tìm được $x_0$, suy ra $y_0$.

- Bước 3: Ứng với mỗi tiếp điểm, ta tìm được một tiếp tuyến $d: y=k\left(x-x_0\right)+y_0$

Ngoài ra đề bài thường cho hệ số góc tiếp tuyến dưới dạng sau:

- Nếu tiếp tuyến $d / / \Delta: y=a x+b \Rightarrow k=a$

- Nếu tiếp tuyến $d \perp \Delta: y=ax+b \Rightarrow k=-\frac{1}{a}$.

- Nếu tiếp tuyến tạo với trục hoành $Ox$ một góc $\alpha$ thì $k=\tan \alpha$ (hoặc $k=-\tan \alpha$ ).

- Nếu tiếp tuyến tạo với $d: y=a x+b$ một góc $\alpha$ thì $\frac{k-a}{1+k a}=\tan \alpha$ (hoặc $-\tan \alpha$ ).

Ví dụ minh họa:

Viết phương trình tiếp tuyến $\Delta$ của đồ thị $(C): y=x^2-x+2$, biết $\Delta$ vuông góc với $(d): 5 y=-x+300$

Lời giải

Ta có $5 y=-x+300 \Leftrightarrow y=-\frac{1}{5} x+600$

$\Rightarrow$ hệ số góc của đường thẳng $(d)$ là $k_{d}=-\frac{1}{5}$.

Ta có $y^{\prime}=2 x-1$. Gọi $M\left(x_0 ; y_0\right)$ là tiếp điểm của tiếp tuyến $\Delta$.

Vì $\Delta \perp(d) \Leftrightarrow f^{\prime}\left(x_0\right) \cdot k_d=-1 \Leftrightarrow k_d \cdot\left(2 x_0-1\right)=-1 \Leftrightarrow 2 x_0-1=5 \Leftrightarrow x_0=3$

$\Rightarrow \left[\begin{array}{l}y_0=8 \\f^{\prime}\left(x_0\right)=2 x_0-1=5\end{array}\right.$

Vậy phương trình tiếp tuyến $(\Delta): y=5(x-3)+8=5 x-7$.

Bài toán 2. Viết phương trình tiếp tuyến của đồ thị hàm số $y=f(x)$ kẻ từ $A\left(x_A ; y_A\right)$ (qua $A$ )

Phương pháp giải:

- Bước 1: Gọi $M(a; f(a))$ là tiếp điểm và tính hệ số góc tiếp tuyến $k=y^{\prime}(a)=f^{\prime}(a)$ theo $a$

- Bước 2: Tiếp tuyến có dạng $d: y=f^{\prime}(a)(x-a)+y(a)(*)$.

 

Vì điểm $A\left(x_A ; y_A\right) \in d \Leftrightarrow y_A=f^{\prime}(a)\left(x_A-a\right)+y(a)$ và giải được $a$.

- Bước 3: Thế $a$ vào(*) ta được tiếp tuyến cần tìm.

Ví dụ minh họa:

Viết phương trình tiếp tuyến $\Delta$ của đồ thị $(C): y=2 x^4-4 x^2-1$ biết tiếp tuyến $\Delta$ đi qua điểm $A(1 ;-3)$.

Lời giải

- Gọi hoành độ tiếp điểm là $x_0$. Suy ra $\left\{\begin{array}{l}y_0=2 x_0{ }^4-4 x_0{ }^2-1 \\ y^{\prime}\left(x_0\right)=8 x_0{ }^3-8 x_0\end{array}\right.$

- Phương trình tiếp tuyến $\Delta$

$y=y^{\prime}\left(x_0\right)\left(x-x_0\right)+y_0 \text { hay } y=\left(8 x_0{ }^3-8 x_0\right)\left(x-x_0\right)+2 x_0{ }^4-4 x_0{ }^2-1 = \left(8 x_0{ }^3-8 x_0\right)\left(x-x_0\right)+2 x_0{ }^4-4 x_0{ }^2-1 .$

Mà $A(1 ;-3) \in \Delta$ nên $\left(8 x_0^3-8 x_0\right)\left(1-x_0\right)+2 x_0{ }^4-4 x_0{ }^2-1=-3 \Leftrightarrow-6 x_0{ }^4+8 x_0{ }^3+4 x_0{ }^2+2=0$

$\Leftrightarrow\left[\begin{array}{l}x_0=\frac{1}{3} \\x_0=-1 \\x_0=1\end{array}\right.$

- Thế $x_0=-1, x_0=\frac{1}{3}, x_0=1$ vào phương trình tiếp tuyến ta được. $\Delta_1: y=-3, \Delta_2: y=-\frac{64}{27} x-\frac{17}{27}$.

 

Hy vọng với các kiến thức trọng tâm về đạo hàm ở trên sẽ giúp chúng mình hiểu và giải quyết được các bài toán liên quan tới đạo hàm trong chương trình toán phổ thông nhé. 

Bình luận (0)
Bạn cần đăng nhập để bình luận
Bài viết liên quan
new
Cụm động từ quen thuộc bắt đầu bằng chữ T mà bạn cần biết

Khám phá các cụm động từ quen thuộc bắt đầu bằng chữ "T" trong tiếng Anh, bao gồm định nghĩa và ví dụ minh họa chi tiết. Bài viết giúp bạn nắm vững và sử dụng các cụm động từ này một cách hiệu quả.

Admin FQA

15/05/2024

new
10 từ điển tiếng Anh online tốt nhất hiện nay

Hiện nay, từ điển online đang trở thành loại từ điển hữu hiệu nhất và được nhiều người sử dụng. Nhưng làm sao để chọn được loại từ điển uy tín? Thì không phải là dễ. Do đó, FQA.vn xin giới thiệu tới các bạn 10 từ điển tiếng Anh online tốt nhất hiện nay ở bài viết dưới đây, nhằm giúp các bạn dễ dàng lựa chọn.

Admin FQA

08/05/2024

new
Tổng hợp kinh nghiệm khi giải bài tập toán lớp 8

Toán lớp 8 là một trong những môn quan trọng bậc nhất ở bậc THCS, nó xuyên suốt cả khoảng thời gian dài học tập và công việc sau này. Đặc biệt là các em bước vào năm học lớp 8 thì càng phải tập trung học môn toán hơn bao giờ hết, bởi đây là một trong những năm tạo dựng nền tảng kiến thức vững chắc phục vụ cho các năm học tiếp theo để ôn thi vượt cấp, tốt nghiệp, đại học. Để bứt phá điểm số môn Toán trong năm học lớp 8 này, các bạn học sinh có thể tham khảo và áp dụng những kinh nghiệm để giải bài tập Toán 8 hiệu quả mà FQA đã tổng kết dưới đây!

Admin FQA

07/05/2024

new
1 phút nắm trọn cách sử dụng câu với "Now"

Trong thế giới của các trạng từ chỉ thời gian, từ “now” chắc chắn là một trong những từ đầu tiên chúng ta tiếp xúc và nhớ mãi. Nhưng liệu khi nào chúng ta nên sử dụng từ này và nó đại diện cho thì nào? Hãy cùng FQA.vn khám phá ngay về “now” và cách sử dụng nó một cách chính xác và linh hoạt nhất trong các câu. Điều này không chỉ giúp bạn hiểu rõ hơn về ngữ cảnh sử dụng của từ “now”, mà còn giúp nâng cao khả năng diễn đạt của bạn trong giao tiếp tiếng Anh!

Admin FQA

25/04/2024

new
Top 4 web tra phiên âm tiếng Anh miễn phí và chính xác nhất

Đã bao giờ bạn đã cảm thấy tự ti khi phát âm sai một từ và không được ai sửa chữa? Hay khi những từ cùng chữ vẫn lại được phát âm khác nhau, liệu có khiến bạn bối rối không? Nếu câu trả lời là có, thì bạn không phải một mình. Đây là thời điểm tuyệt vời để khám phá thế giới của các từ điển trực tuyến, giúp bạn tiến gần hơn đến mục tiêu hoàn hảo hóa phát âm tiếng Anh của mình! Dưới đây là bốn nguồn tài nguyên trực tuyến được FQA.vn đánh giá cao, mang lại cho bạn những tính năng độc đáo và hữu ích trong quá trình học tập.

Admin FQA

25/04/2024

new
Tất tần tật về Câu hỏi đuôi: Định nghĩa, cách sử dụng và ví dụ

Bạn đã biết câu hỏi đuôi là gì chưa? Đừng lo lắng về vấn đề này nữa! FQA.vn sẽ chỉ cho bạn tất cả những gì bạn cần biết về câu hỏi đuôi trong tiếng Anh. Bạn có biết câu hỏi đuôi là gì không? Chúng là những câu hỏi thêm vào cuối câu để xác nhận hoặc nhấn mạnh điều gì đó. Vấn đề này khiến nhiều người cảm thấy bối rối vì có nhiều cách sử dụng khác nhau. Nhưng đừng lo, trang web FQA.vn có bài viết chi tiết về chủ đề này. Họ sẽ giải thích rõ ràng về cấu trúc và cách sử dụng của câu hỏi đuôi trong tiếng Anh. Hãy cùng đọc và thử thực hành để hiểu rõ hơn nhé!

Admin FQA

25/04/2024

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi