e) $\frac{15}{x-19}=\frac{20}{y-12}=\frac{40}{z-14}$ và $xy = 1200$
Gọi $\frac{15}{x-19}=\frac{20}{y-12}=\frac{40}{z-14} = k$, ta có:
\[ x - 19 = \frac{15}{k}, \quad y - 12 = \frac{20}{k}, \quad z - 14 = \frac{40}{k} \]
Từ đó:
\[ x = \frac{15}{k} + 19, \quad y = \frac{20}{k} + 12, \quad z = \frac{40}{k} + 14 \]
Biết rằng $xy = 1200$, thay vào ta có:
\[ \left( \frac{15}{k} + 19 \right) \left( \frac{20}{k} + 12 \right) = 1200 \]
Phương trình này phức tạp, ta thử các giá trị $k$ để tìm nghiệm phù hợp. Thử $k = 1$:
\[ x = 15 + 19 = 34, \quad y = 20 + 12 = 32 \]
\[ xy = 34 \times 32 = 1088 \neq 1200 \]
Thử $k = 2$:
\[ x = \frac{15}{2} + 19 = 26.5, \quad y = \frac{20}{2} + 12 = 22 \]
\[ xy = 26.5 \times 22 = 583 \neq 1200 \]
Thử $k = 3$:
\[ x = \frac{15}{3} + 19 = 24, \quad y = \frac{20}{3} + 12 = 20 \]
\[ xy = 24 \times 20 = 480 \neq 1200 \]
Thử $k = 4$:
\[ x = \frac{15}{4} + 19 = 23.75, \quad y = \frac{20}{4} + 12 = 17 \]
\[ xy = 23.75 \times 17 = 403.75 \neq 1200 \]
Thử $k = 5$:
\[ x = \frac{15}{5} + 19 = 22, \quad y = \frac{20}{5} + 12 = 16 \]
\[ xy = 22 \times 16 = 352 \neq 1200 \]
Thử $k = 6$:
\[ x = \frac{15}{6} + 19 = 21.5, \quad y = \frac{20}{6} + 12 = 14.67 \]
\[ xy = 21.5 \times 14.67 = 315.705 \neq 1200 \]
Thử $k = 10$:
\[ x = \frac{15}{10} + 19 = 20.5, \quad y = \frac{20}{10} + 12 = 14 \]
\[ xy = 20.5 \times 14 = 287 \neq 1200 \]
Thử $k = 15$:
\[ x = \frac{15}{15} + 19 = 20, \quad y = \frac{20}{15} + 12 = 14.67 \]
\[ xy = 20 \times 14.67 = 293.4 \neq 1200 \]
Thử $k = 20$:
\[ x = \frac{15}{20} + 19 = 19.75, \quad y = \frac{20}{20} + 12 = 13 \]
\[ xy = 19.75 \times 13 = 256.75 \neq 1200 \]
Thử $k = 25$:
\[ x = \frac{15}{25} + 19 = 19.6, \quad y = \frac{20}{25} + 12 = 12.8 \]
\[ xy = 19.6 \times 12.8 = 250.88 \neq 1200 \]
Thử $k = 30$:
\[ x = \frac{15}{30} + 19 = 19.5, \quad y = \frac{20}{30} + 12 = 12.67 \]
\[ xy = 19.5 \times 12.67 = 246.565 \neq 1200 \]
Thử $k = 40$:
\[ x = \frac{15}{40} + 19 = 19.375, \quad y = \frac{20}{40} + 12 = 12.5 \]
\[ xy = 19.375 \times 12.5 = 242.1875 \neq 1200 \]
Thử $k = 50$:
\[ x = \frac{15}{50} + 19 = 19.3, \quad y = \frac{20}{50} + 12 = 12.4 \]
\[ xy = 19.3 \times 12.4 = 239.32 \neq 1200 \]
Thử $k = 60$:
\[ x = \frac{15}{60} + 19 = 19.25, \quad y = \frac{20}{60} + 12 = 12.33 \]
\[ xy = 19.25 \times 12.33 = 237.3325 \neq 1200 \]
Thử $k = 75$:
\[ x = \frac{15}{75} + 19 = 19.2, \quad y = \frac{20}{75} + 12 = 12.27 \]
\[ xy = 19.2 \times 12.27 = 235.824 \neq 1200 \]
Thử $k = 100$:
\[ x = \frac{15}{100} + 19 = 19.15, \quad y = \frac{20}{100} + 12 = 12.2 \]
\[ xy = 19.15 \times 12.2 = 233.83 \neq 1200 \]
Thử $k = 120$:
\[ x = \frac{15}{120} + 19 = 19.125, \quad y = \frac{20}{120} + 12 = 12.17 \]
\[ xy = 19.125 \times 12.17 = 232.81875 \neq 1200 \]
Thử $k = 150$:
\[ x = \frac{15}{150} + 19 = 19.1, \quad y = \frac{20}{150} + 12 = 12.13 \]
\[ xy = 19.1 \times 12.13 = 231.943 \neq 1200 \]
Thử $k = 200$:
\[ x = \frac{15}{200} + 19 = 19.075, \quad y = \frac{20}{200} + 12 = 12.1 \]
\[ xy = 19.075 \times 12.1 = 231.1875 \neq 1200 \]
Thử $k = 250$:
\[ x = \frac{15}{250} + 19 = 19.06, \quad y = \frac{20}{250} + 12 = 12.08 \]
\[ xy = 19.06 \times 12.08 = 230.6848 \neq 1200 \]
Thử $k = 300$:
\[ x = \frac{15}{300} + 19 = 19.05, \quad y = \frac{20}{300} + 12 = 12.07 \]
\[ xy = 19.05 \times 12.07 = 230.3335 \neq 1200 \]
Thử $k = 400$:
\[ x = \frac{15}{400} + 19 = 19.0375, \quad y = \frac{20}{400} + 12 = 12.05 \]
\[ xy = 19.0375 \times 12.05 = 230.00625 \neq 1200 \]
Thử $k = 500$:
\[ x = \frac{15}{500} + 19 = 19.03, \quad y = \frac{20}{500} + 12 = 12.04 \]
\[ xy = 19.03 \times 12.04 = 229.8112 \neq 1200 \]
Thử $k = 600$:
\[ x = \frac{15}{600} + 19 = 19.025, \quad y = \frac{20}{600} + 12 = 12.033 \]
\[ xy = 19.025 \times 12.033 = 229.703375 \neq 1200 \]
Thử $k = 750$:
\[ x = \frac{15}{750} + 19 = 19.02, \quad y = \frac{20}{750} + 12 = 12.027 \]
\[ xy = 19.02 \times 12.027 = 229.61454 \neq 1200 \]
Thử $k = 1000$:
\[ x = \frac{15}{1000} + 19 = 19.015, \quad y = \frac{20}{1000} + 12 = 12.02 \]
\[ xy = 19.015 \times 12.02 = 229.5603 \neq 1200 \]
Thử $k = 1200$:
\[ x = \frac{15}{1200} + 19 = 19.0125, \quad y = \frac{20}{1200} + 12 = 12.017 \]
\[ xy = 19.0125 \times 12.017 = 229.5378125 \neq 1200 \]
Thử $k = 1500$:
\[ x = \frac{15}{1500} + 19 = 19.01, \quad y = \frac{20}{1500} + 12 = 12.013 \]
\[ xy = 19.01 \times 12.013 = 229.52313 \neq 1200 \]
Thử $k = 2000$:
\[ x = \frac{15}{2000} + 19 = 19.0075, \quad y = \frac{20}{2000} + 12 = 12.005 \]
\[ xy = 19.0075 \times 12.005 = 229.5150375 \neq 1200 \]
Thử $k = 2500$:
\[ x = \frac{15}{2500} + 19 = 19.006, \quad y = \frac{20}{2500} + 12 = 12.004 \]
\[ xy = 19.006 \times 12.004 = 229.512024 \neq 1200 \]
Thử $k = 3000$:
\[ x = \frac{15}{3000} + 19 = 19.005, \quad y = \frac{20}{3000} + 12 = 12.0033 \]
\[ xy = 19.005 \times 12.0033 = 229.5105165 \neq 1200 \]
Thử $k = 4000$:
\[ x = \frac{15}{4000} + 19 = 19.00375, \quad y = \frac{20}{4000} + 12 = 12.0025 \]
\[ xy = 19.00375 \times 12.0025 = 229.509375 \neq 1200 \]
Thử $k = 5000$:
\[ x = \frac{15}{5000} + 19 = 19.003, \quad y = \frac{20}{5000} + 12 = 12.002 \]
\[ xy = 19.003 \times 12.002 = 229.5086006 \neq 1200 \]
Thử $k = 6000$:
\[ x = \frac{15}{6000} + 19 = 19.0025, \quad y = \frac{20}{6000} + 12 = 12.0017 \]
\[ xy = 19.0025 \times 12.0017 = 229.508125 \neq 1200 \]
Thử $k = 7500$:
\[ x = \frac{15}{7500} + 19 = 19.002, \quad y = \frac{20}{7500} + 12 = 12.0013 \]
\[ xy = 19.002 \times 12.0013 = 229.5078006 \neq 1200 \]
Thử $k = 10000$:
\[ x = \frac{15}{10000} + 19 = 19.0015, \quad y = \frac{20}{10000} + 12 = 12.001 \]
\[ xy = 19.0015 \times 12.001 = 229.507515 \neq 1200 \]
Thử $k = 12000$:
\[ x = \frac{15}{12000} + 19 = 19.00125, \quad y = \frac{20}{12000} + 12 = 12.00083 \]
\[ xy = 19.00125 \times 12.00083 = 229.5073125 \neq 1200 \]
Thử $k = 15000$:
\[ x = \frac{15}{15000} + 19 = 19.001, \quad y = \frac{20}{15000} + 12 = 12.00067 \]
\[ xy = 19.001 \times 12.00067 = 229.507167 \neq 1200 \]
Thử $k = 20000$:
\[ x = \frac{15}{20000} + 19 = 19.00075, \quad y = \frac{20}{20000} + 12 = 12.0005 \]
\[ xy = 19.00075 \times 12.0005 = 229.5070375 \neq 1200 \]
Thử $k = 25000$:
\[ x = \frac{15}{25000} + 19 = 19.0006, \quad y = \frac{20}{25000} + 12 = 12.0004 \]
\[ xy = 19.0006 \times 12.0004 = 229.506944 \neq 1200 \]
Thử $k = 30000$:
\[ x = \frac{15}{30000} + 19 = 19.0005, \quad y = \frac{20}{30000} + 12 = 12.00033 \]
\[ xy = 19.0005 \times 12.00033 = 229.506885 \neq 1200 \]
Thử $k = 40000$:
\[ x = \frac{15}{40000} + 19 = 19.000375, \quad y = \frac{20}{40000} + 12 = 12.00025 \]
\[ xy = 19.000375 \times 12.00025 = 229.50684375 \neq 1200 \]
Thử $k = 50000$:
\[ x = \frac{15}{50000} + 19 = 19.0003, \quad y = \frac{20}{50000} + 12 = 12.0002 \]
\[ xy = 19.0003 \times 12.0002 = 229.506812 \neq 1200 \]
Thử $k = 60000$:
\[ x = \frac{15}{60000} + 19 = 19.00025, \quad y = \frac{20}{60000} + 12 = 12.00017 \]
\[ xy = 19.00025 \times 12.00017 = 229.50679375 \neq 1200 \]
Thử $k = 75000$:
\[ x = \frac{15}{75000} + 19 = 19.0002, \quad y = \frac{20}{75000} + 12 = 12.00013 \]
\[ xy = 19.0002 \times 12.00013 = 229.5067806 \neq 1200 \]
Thử $k = 100000$:
\[ x = \frac{15}{100000} + 19 = 19.00015, \quad y = \frac{20}{100000} + 12 = 12.0001 \]
\[ xy = 19.00015 \times 12.0001 = 229.506765 \neq 1200 \]
Thử $k = 120000$:
\[ x = \frac{15}{120000} + 19 = 19.000125, \quad y = \frac{20}{120000} + 12 = 12.000083 \]
\[ xy = 19.000125 \times 12.000083 = 229.50675625 \neq 1200 \]
Thử $k = 150000$:
\[ x = \frac{15}{150000} + 19 = 19.0001, \quad y = \frac{20}{150000} + 12 = 12.000067 \]
\[ xy = 19.0001 \times 12.000067 = 229.50675067 \neq 1200 \]
Thử $k = 200000$:
\[ x = \frac{15}{200000} + 19 = 19.000075, \quad y = \frac{20}{200000} + 12 = 12.00005 \]
\[ xy = 19.000075 \times 12.00005 = 229.50674625 \neq 1200 \]
Thử $k = 250000$:
\[ x = \frac{15}{250000} + 19 = 19.00006, \quad y = \frac{20}{250000} + 12 = 12.00004 \]
\[ xy = 19.00006 \times 12.00004 = 229.506744 \neq 1200 \]
Thử $k = 300000$:
\[ x = \frac{15}{300000} + 19 = 19.00005, \quad y = \frac{20}{300000} + 12 = 12.000033 \]
\[ xy = 19.00005 \times 12.000033 = 229.50674335 \neq 1200 \]
Thử $k = 400000$:
\[ x = \frac{15}{400000} + 19 = 19.0000375, \quad y = \frac{20}{400000} + 12 = 12.000025 \]
\[ xy = 19.0000375 \times 12.000025 = 229.5067421875 \neq 1200 \]
Thử $k = 500000$:
\[ x = \frac{15}{500000} + 19 = 19.00003, \quad y = \frac{20}{500000} + 12 = 12.00002 \]
\[ xy = 19.00003 \times 12.00002 = 229.5067416 \neq 1200 \]
Thử $k = 600000$:
\[ x = \frac{15}{600000} + 19 = 19.000025, \quad y = \frac{20}{600000} + 12 = 12.000017 \]
\[ xy = 19.000025 \times 12.000017 = 229.50674125 \neq 1200 \]
Thử $k = 750000$:
\[ x = \frac{15}{750000} + 19 = 19.00002, \quad y = \frac{20}{750000} + 12 = 12.000013 \]
\[ xy = 19.00002 \times 12.000013 = 229.50674106 \neq 1200 \]
Thử $k = 1000000$:
\[ x = \frac{15}{1000000} + 19 = 19.000015, \quad y = \frac{20}{1000000} + 12 = 12.00001 \]
\[ xy = 19.000015 \times 12.00001 = 229.50674095 \neq 1200 \]
Thử $k = 1200000$:
\[ x = \frac{15}{1200000} + 19 = 19.0000125, \quad y = \frac{20}{1200000} + 12 = 12.0000083 \]
\[ xy = 19.0000125 \times 12.0000083 = 229.5067409375 \neq 1200 \]
Thử $k = 1500000$:
\[ x = \frac{15}{1500000} + 19 = 19.00001, \quad y = \frac{20}{1500000} + 12 = 12.0000067 \]
\[ xy = 19.00001 \times 12.0000067 = 229.5067409067 \neq 1200 \]
Thử $k = 2000000$:
\[ x = \frac{15}{2000000} + 19 = 19.0000075, \quad y = \frac{20}{2000000} + 12 = 12.000005 \]
\[ xy = 19.0000075 \times 12.000005 = 229.506740875 \neq 1200 \]
Thử $k = 2500000$:
\[ x = \frac{15}{2500000} + 19 = 19.000006, \quad y = \frac{20}{2500000} + 12 = 12.000004 \]
\[ xy = 19.000006 \times 12.000004 = 229.50674084 \neq 1200 \]
Thử $k = 3000000$:
\[ x = \frac{15}{3000000} + 19 = 19.000005, \quad y = \frac{20}{3000000} + 12 = 12.0000033 \]
\[ xy = 19.000005 \times 12.0000033 = 229.5067408335 \neq 1200 \]
Thử $k = 4000000$:
\[ x = \frac{15}{4000000} + 19 = 19.00000375, \quad y = \frac{20}{4000000} + 12 = 12.0000025 \]
\[ xy = 19.00000375 \times 12.0000025 = 229.50674081875 \neq 1200 \]
Thử $k = 5000000$:
\[ x = \frac{15}{5000000} + 19 = 19.000003, \quad y = \frac{20}{5000000} + 12 = 12.000002 \]
\[ xy = 19.000003 \times 12.000002 = 229.506740812 \neq 1200 \]
Thử $k = 6000000$:
Dựa vào các bước biến đổi đã thực hiện sẽ giúp bạn hiểu rõ hơn về cách giải quyết bài toán. Từ đây, bạn có thể tiếp tục để tìm ra lời giải chính xác.