Cữuuuuuuuuuuuu

rotate image
Trả lời câu hỏi của Quy Do

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
CÂU TRẢ LỜI
avatar
Timi

02/01/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Câu 5: Trước tiên, ta sẽ xác định vị trí của các điểm và đường thẳng trong hình chóp S.ABCD. 1. Xác định các điểm và đường thẳng: - Đáy ABCD là hình bình hành tâm O. - E là trung điểm của SC. - F là điểm trên đoạn BD sao cho $3BF = 2BD$. Điều này có nghĩa là F chia BD thành tỷ lệ $\frac{2}{3}$ từ B về D. - M là giao điểm của SB và (AEF). 2. Tìm tỉ số $\frac{SM}{SB}$: - Ta sẽ sử dụng phương pháp tọa độ để dễ dàng hơn trong việc tính toán. - Chọn hệ tọa độ sao cho O là gốc tọa độ, A có tọa độ $(a, 0, 0)$, B có tọa độ $(0, b, 0)$, C có tọa độ $(-a, b, 0)$, D có tọa độ $(-a, 0, 0)$, và S có tọa độ $(0, 0, h)$. - E là trung điểm của SC, nên tọa độ của E là $\left(\frac{-a}{2}, \frac{b}{2}, \frac{h}{2}\right)$. - F chia BD theo tỷ lệ $\frac{2}{3}$ từ B về D, nên tọa độ của F là $\left(-\frac{2a}{3}, \frac{b}{3}, 0\right)$. 3. Phương trình mặt phẳng (AEF): - Ta cần tìm phương trình mặt phẳng đi qua ba điểm A, E, F. - Vector $\overrightarrow{AE} = \left(\frac{-3a}{2}, \frac{b}{2}, \frac{h}{2}\right)$. - Vector $\overrightarrow{AF} = \left(-\frac{5a}{3}, \frac{b}{3}, 0\right)$. - Vector pháp tuyến của mặt phẳng (AEF) là $\overrightarrow{n} = \overrightarrow{AE} \times \overrightarrow{AF}$. - Tính tích vector: \[ \overrightarrow{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{-3a}{2} & \frac{b}{2} & \frac{h}{2} \\ -\frac{5a}{3} & \frac{b}{3} & 0 \end{vmatrix} = \left(0 - \frac{bh}{6}\right)\mathbf{i} - \left(0 + \frac{5ah}{6}\right)\mathbf{j} + \left(\frac{-3ab}{6} + \frac{5ab}{6}\right)\mathbf{k} = \left(-\frac{bh}{6}, -\frac{5ah}{6}, \frac{2ab}{6}\right) \] - Phương trình mặt phẳng (AEF) là: \[ -\frac{bh}{6}(x - a) - \frac{5ah}{6}y + \frac{2ab}{6}z = 0 \] 4. Giao điểm M của SB và (AEF): - Đường thẳng SB có phương trình tham số: \[ x = 0, \quad y = bt, \quad z = ht \quad (0 \leq t \leq 1) \] - Thay vào phương trình mặt phẳng (AEF): \[ -\frac{bh}{6}(0 - a) - \frac{5ah}{6}(bt) + \frac{2ab}{6}(ht) = 0 \] \[ \frac{abh}{6} - \frac{5abh}{6}t + \frac{2abh}{6}t = 0 \] \[ \frac{abh}{6} = \frac{3abh}{6}t \] \[ t = \frac{1}{3} \] - Vậy M có tọa độ $\left(0, \frac{b}{3}, \frac{h}{3}\right)$. 5. Tỉ số $\frac{SM}{SB}$: - Điểm M chia SB theo tỷ lệ $\frac{1}{3}$ từ S về B, nên $\frac{SM}{SB} = \frac{1}{3}$. 6. Tính $3a + b$: - Ta có $\frac{SM}{SB} = \frac{1}{3}$, suy ra $a = 1$ và $b = 3$. - Vậy $3a + b = 3 \cdot 1 + 3 = 6$. Đáp số: $3a + b = 6$.
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
avatar
level icon
Hưng cutii

02/01/2025

hình học khoogn giann

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Quy Do áp dụng công thức là ra

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved