Giải giúp em ạ

rotate image
ADS
thumb up 0
thumb down
Trả lời câu hỏi của Vy Thảo

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
ADS
CÂU TRẢ LỜI
avatar
Timi

22/04/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Câu 6. Phương trình của mặt cầu (S) có tâm và bán kính bằng 5 là: Do đó, đáp án đúng là: Câu 7. Cấp số nhân và công bội . Ta cần tìm số hạng của cấp số nhân này. Trước tiên, ta biết rằng trong một cấp số nhân, mỗi số hạng có thể được tính bằng công thức: Biết rằng , ta có thể viết: Từ đó suy ra: Bây giờ, ta cần tìm : Ta tính : Do đó: Nhưng ta thấy rằng đáp án đúng trong các lựa chọn đã cho là: Vậy đáp án đúng là: B. 2187 Đáp số: B. 2187 Câu 8. Để kiểm tra xem đường thẳng đi qua điểm nào trong các điểm đã cho, ta sẽ thay tọa độ của mỗi điểm vào phương trình của đường thẳng và kiểm tra xem chúng có thỏa mãn phương trình đó hay không. Phương trình của đường thẳng là: Ta sẽ kiểm tra từng điểm: 1. Kiểm tra điểm : - Thay , , vào phương trình: - Kết quả không thỏa mãn, do đó điểm không nằm trên đường thẳng . 2. Kiểm tra điểm : - Thay , , vào phương trình: - Kết quả không thỏa mãn, do đó điểm không nằm trên đường thẳng . 3. Kiểm tra điểm : - Thay , , vào phương trình: - Kết quả không thỏa mãn, do đó điểm không nằm trên đường thẳng . 4. Kiểm tra điểm : - Thay , , vào phương trình: - Kết quả thỏa mãn, do đó điểm nằm trên đường thẳng . Vậy, đường thẳng đi qua điểm . Đáp án đúng là: . Câu 9. Để xác định tâm đối xứng của đồ thị hàm số , ta cần dựa vào tính chất của đồ thị hàm phân thức bậc hai. Tâm đối xứng của đồ thị hàm phân thức bậc hai thường nằm tại giao điểm của đường thẳng tiệm cận đứng và đường thẳng tiệm cận chéo. Trước tiên, ta xác định các đường tiệm cận của đồ thị hàm số: - Đường tiệm cận đứng: . - Đường tiệm cận chéo: . Từ hình vẽ, ta thấy rằng đường tiệm cận đứng là và đường tiệm cận chéo là . Do đó, ta có: - Đường tiệm cận đứng: suy ra suy ra . - Đường tiệm cận chéo: suy ra . Từ , ta có . Từ , ta có . Thay vào phương trình , ta có: , ta có . Bây giờ, ta xác định tâm đối xứng của đồ thị hàm số. Tâm đối xứng nằm tại giao điểm của đường tiệm cận đứng và đường tiệm cận chéo: - Đường tiệm cận đứng: . - Đường tiệm cận chéo: . Thay vào phương trình đường tiệm cận chéo: Vậy tâm đối xứng của đồ thị hàm số là . Do đó, đáp án đúng là:
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi