1. Lý thuyết
+) Nửa đường tròn đơn vị: nửa đường tròn tâm O, bán kính R = 1 nằm phía trên trục hoành.
+) Với mỗi góc \(\alpha ({0^o} \le \alpha \le {180^o})\)có duy nhất điểm \(M({x_0};{y_0})\) trên nửa đường tròn đơn vị để \(\widehat {xOM} = \alpha .\) Khi đó:
\(\sin \alpha = {y_0}\) là tung độ của M
\(\cos \alpha = {x_0}\) là hoành độ của M
\(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{{y_0}}}{{{x_0}}}(\alpha \ne {90^o})\)
\(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{{x_0}}}{{{y_0}}}(\alpha \ne {0^o},\alpha \ne {180^o})\)
+ Nhận xét:
\({0^ \circ } < \alpha < {90^ \circ }:\cos \alpha > 0,\sin \alpha > 0,\tan \alpha > 0,\cot \alpha > 0.\)
\({90^ \circ } < \alpha < {180^ \circ }:\cos \alpha < 0,\sin \alpha > 0,\tan \alpha < 0,\cot \alpha < 0.\)
+ Cách xác định điểm trên nửa đường tròn đơn vị tương ứng với góc \(\alpha \)
Bước 1. Ta đã biết góc \(\alpha \), sử dụng máy tính hoặc các công cụ khác để tìm \(\sin \alpha \) và \(\cos \alpha \).
Bước 2. Xác định M trên hệ trục, với \({x_M} = \cos \alpha \) và \({y_M} = \sin \alpha \)
+ Cách xác định góc tương ứng với điểm trên nửa đường tròn đơn vị.
Ta đã biết điểm M, tức là đã biết hoành độ và tung độ của M, kí hiệu là \({x_M},{y_M}.\)
Bước 1. Đặt \(\alpha = \widehat {xOM}\), là góc cần tìm. Khi đó \({x_M} = \cos \alpha \) và \({y_M} = \sin \alpha \)
Bước 2. Sử dụng máy tính hoặc các công cụ khác để tìm \(\alpha \).
2. Ví dụ minh họa
Ví dụ 1. Tìm các giá trị lượng giác của góc \({63^o}\)
Sử dụng máy tính cầm tay, ta được:
\(\begin{array}{l}\sin {63^o} \approx 0,891\\\cos {63^o} \approx 0,454\\\tan {63^o} \approx 1,963\\\cot {63^o} = 1:\tan {63^o} \approx 0,51\end{array}\)
Ví dụ 2. Tìm góc \(\alpha ({0^o} \le \alpha \le {180^o})\) thỏa mãn \(\sin \alpha = 0,67\)
Trên nửa đường tròn đơn vị, lấy điểm M sao cho \({y_M} = 0,67\). Dễ thấy có 2 điểm thỏa mãn, gọi là M và M’.
Do đó có hai góc thỏa mãn là \(\widehat {xOM}\) và \(\widehat {xOM'}\), trong đó \(\widehat {xOM} < {90^ \circ } < \widehat {xOM'}\).
Vì M và M’ đối xứng nhau qua Oy nên \(\widehat {MOy} = \widehat {M'Oy}\)\( \Rightarrow \widehat {M'Oy} = {90^ \circ } - \widehat {xOM} \Rightarrow \widehat {xOM'} = {90^ \circ } + \widehat {M'Oy} = {180^ \circ } - \widehat {xOM}\)
Dùng máy tính, bấm SHIFT sin 0.67 =, ta được góc xấp xỉ \({42^o}\)
\( \Rightarrow \widehat {xOM} = {42^ \circ },\widehat {xOM'} = {180^ \circ } - {42^ \circ } = {138^ \circ }\)
Vậy \(\alpha = {42^ \circ }\) hoặc \(\alpha = {138^ \circ }\)
Tổng hợp danh pháp các nguyên tố hóa học
Thư lại dụ Vương Thông
Chủ đề 7. Cộng đồng các dân tộc Việt Nam
Đăm Săn đi bắt nữ thần mặt trời
Unit 7: Inventions
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10