Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Cho bốn điểm \(A\left( {1;6;2} \right),\,B\left( {4;0;6} \right)\,,\) \(C\left( {5;0;4} \right)\,,\,D\left( {5;1;3} \right)\).
LG a
Chứng minh rằng bốn điểm đó không đồng phẳng.
Lời giải chi tiết:
Ta có \(\overrightarrow {AB} = \left( {3; - 6;4} \right);\overrightarrow {AC} = \left( {4; - 6;2} \right);\) \(\overrightarrow {AD} = \left( {4; - 5;1} \right)\).
\(\eqalign{
& \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] \cr &= \left( {\left| \matrix{
- 6\,\,\,\,\,4 \hfill \cr
- 6\,\,\,\,\,2 \hfill \cr} \right|;\left| \matrix{
4\,\,\,\,\,\,3 \hfill \cr
2\,\,\,\,\,\,4 \hfill \cr} \right|;\left| \matrix{
3\,\,\,\, - 6 \hfill \cr
4\,\,\,\, - 6 \hfill \cr} \right|} \right) \cr & = \left( {12;10;6} \right) \cr
& \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} \cr & = 12.4 - 5.10 + 6.1 = 4 \ne 0. \cr} \)
Vậy A, B, C, D không đồng phẳng nên ABCD là hình tứ diện.
LG b
Tính thể tích tứ diện ABCD.
Lời giải chi tiết:
Thể tích hình tứ diện ABCD là \({V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| \) \(= {4 \over 6} = {2 \over 3}\).
LG c
Viết phương trình mp(BCD).
Lời giải chi tiết:
Ta có \(\overrightarrow {BC} = \left( {1;0; - 2} \right);\overrightarrow {BD} = \left( {1;1; - 3} \right)\)
\(\overrightarrow n = \left[ {\overrightarrow {BC} ;\overrightarrow {BD} } \right] \) \(= \left( {\left| \matrix{
0\,\,\,\, - 2 \hfill \cr
1\,\,\,\,\, - 3 \hfill \cr} \right|;\left| \matrix{
- 2\,\,\,\,\,1 \hfill \cr
- 3\,\,\,\,\,\,1 \hfill \cr} \right|;\left| \matrix{
1\,\,\,\,\,\,0 \hfill \cr
1\,\,\,\,\,\,\,1 \hfill \cr} \right|} \right) \) \(= \left( {2;1;1} \right).\)
Mp(BCD) qua B(4; 0; 6) có vectơ pháp tuyến \(\overrightarrow n \) nên có phương trình:
\(2\left( {x - 4} \right) + 1\left( {y - 0} \right) + 1\left( {z - 6} \right) = 0 \) \(\Leftrightarrow 2x + y + z - 14 = 0\).
LG d
Viết phương trình mặt cầu tâm A tiếp xúc với mp(BCD). Tìm tọa độ tiếp điểm.
Lời giải chi tiết:
Mặt cầu tâm A tiếp xúc với mp(BCD) có bán kính
\(R = d\left( {A;\left( {BCD} \right)} \right) \) \( = {{\left| {2.1 + 1.6 + 1.2 - 14} \right|} \over {\sqrt {{2^2} + {1^2} + {2^2}} }} = {4 \over {\sqrt 6 }} = {{2\sqrt 6 } \over 3}\).
Phương trình mặt cầu là: \({\left( {x - 1} \right)^2} + {\left( {y - 6} \right)^2} + {\left( {z - 2} \right)^2} = {8 \over 3}\).
Gọi H là tiếp điểm thì AH là đường thẳng đi qua A vuông góc với mp(BCD) nên có vectơ chỉ phương là \(\overrightarrow n = \left( {2;1;1} \right)\).
Vậy AH có phương trình tham số:
\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = 6 + t \hfill \cr
z = 2 + t \hfill \cr} \right.\).
Thay x, y, z vào phương trình mp(BCD) ta được:
\(2\left( {1 + 2t} \right) + 6 + t + 2 + t - 14 = 0\) \( \Rightarrow t = {2 \over 3}\). Vậy \(H\left( {{7 \over 3};{{20} \over 3};{8 \over 3}} \right)\)
Bài 28. Vấn đề tổ chức lãnh thổ công nghiệp
Unit 2. Urbanisation
Tải 10 đề kiểm tra 15 phút - Chương 2 - Hoá học 12
Bài 17. Lao động và việc làm
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Toán lớp 12