Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Cho các vectơ: \(\overrightarrow u = \overrightarrow i - 2\overrightarrow j \,;\) \(\overrightarrow v = 3\overrightarrow i + 5\left( {\overrightarrow j - \overrightarrow k } \right)\,;\) \(\overrightarrow {\rm{w}} = 2\overrightarrow i - \overrightarrow k + 3\overrightarrow j \)
LG a
Tìm toạ độ của các vectơ đó.
Phương pháp giải:
Sử dụng lý thuyết:
\(\begin{array}{l}
\overrightarrow u = a\overrightarrow i + b\overrightarrow j + c\overrightarrow k \\
\Rightarrow \overrightarrow u = \left( {a;b;c} \right)
\end{array}\)
Lời giải chi tiết:
\(\begin{array}{l}
\overrightarrow u = \overrightarrow i - 2\overrightarrow j \\= 1.\overrightarrow i + \left( { - 2} \right)\overrightarrow j + 0\overrightarrow k \\
\Rightarrow \overrightarrow u = \left( {1; - 2;0} \right)\\
\overrightarrow v = 3\overrightarrow i + 5\left( {\overrightarrow j - \overrightarrow k } \right) \\= 3\overrightarrow i + 5\overrightarrow j - 5\overrightarrow k \\
\Rightarrow \overrightarrow v = \left( {3;5; - 5} \right)\\
\overrightarrow k = 2\overrightarrow i - \overrightarrow k + 3\overrightarrow j \\= 2\overrightarrow i + 3\overrightarrow j - \overrightarrow k \\
\Rightarrow \overrightarrow k = \left( {2;3; - 1} \right)
\end{array}\)
LG b
Tìm côsin của các góc \(\left( {\overrightarrow v ,\overrightarrow i } \right)\,;\,\left( {\overrightarrow v ,\overrightarrow j } \right)\,;\,\left( {\overrightarrow v ,\overrightarrow k } \right)\).
Phương pháp giải:
Cô sin góc hợp bởi hai véc tơ:
\(\begin{array}{l}
\overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow v = \left( {{a_2};{b_2};{c_2}} \right)\\
\Rightarrow \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\\
= \frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}
\end{array}\)
Lời giải chi tiết:
Ta có: \(\overrightarrow i = \left( {1;0;0} \right),\overrightarrow j \left( {0;1;0} \right),\) \(\overrightarrow k = \left( {0;0;1} \right)\)
\(\eqalign{
& \cos \left( {\overrightarrow v ,\overrightarrow i } \right) = {{\overrightarrow v .\overrightarrow i } \over {\left| {\overrightarrow v } \right|\left| {\overrightarrow i } \right|}} \cr & = \frac{{3.1 + 5.0 - 5.0}}{{\sqrt {9 + 25 + 25} .\sqrt 1 }}= {3 \over {\sqrt {59} }} \cr
& \cos \left( {\overrightarrow v ,\overrightarrow j } \right) = {{\overrightarrow v .\overrightarrow j } \over {\left| {\overrightarrow v } \right|\left| {\overrightarrow j } \right|}} \cr & = \frac{{3.0 + 5.1 - 5.0}}{{\sqrt {9 + 25 + 25} .\sqrt 1 }}= {5 \over {\sqrt {59} }} \cr
& \cos \left( {\overrightarrow v ,\overrightarrow k } \right) = {{\overrightarrow v .\overrightarrow k } \over {\left| {\overrightarrow v } \right|\left| {\overrightarrow k } \right|}} \cr & = \frac{{3.0 + 5.0 - 5.1}}{{\sqrt {9 + 25 + 25} .\sqrt 1 }}= {{ - 5} \over {\sqrt {59} }} \cr} \)
LG c
Tính các tích vô hướng \(\overrightarrow u .\overrightarrow v \,,\,\overrightarrow u .\overrightarrow {\rm{w}} \,,\,\overrightarrow v .\overrightarrow {\rm{w}} \).
Phương pháp giải:
\(\begin{array}{l}
\overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow v = \left( {{a_2};{b_2};{c_2}} \right)\\
\Rightarrow \overrightarrow u .\overrightarrow v = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}
\end{array}\)
Lời giải chi tiết:
\(\eqalign{
& \overrightarrow u .\overrightarrow v = 1.3 - 2.5 + 0\left( { - 5} \right) = - 7 \cr
& \overrightarrow u .\overrightarrow w = 1.2 - 2.3 + 0\left( { - 1} \right) = - 4 \cr
& \overrightarrow v .\overrightarrow w = 3.2 + 5.3 + (-5).(-1) = 26 \cr} \)
Tải 15 đề kiểm tra 15 phút - Chương 7 – Hóa học 12
Bài 13. Thực hành: đọc bản đồ địa hình, điền vào lược đồ trống một số dãy núi và đỉnh núi
CHƯƠNG I. DAO ĐỘNG CƠ
PHẦN MỘT. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NĂM 2000
Unit 9. Choosing a Career