Bài 10 trang 81 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Cho ba điểm

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

Chứng minh A, B, C không thẳng hàng.

Phương pháp giải:

Kiểm tra không cùng phương.

Lời giải chi tiết:

Ta có .
không cùng phương do đó A, B, C không thẳng hàng.

LG b

Tính chu vi và diện tích tam giác ABC.

Phương pháp giải:

- Tính độ dài các đoạn thẳng AB, BC, CA suy ra chu vi.

- Chứng minh tam giác ABC vuông suy ra diện tích.

Lời giải chi tiết:

Ta có

Vậy chu vi tam giác ABC bằng .
Ta có  vuông tại A nên có diện tích

Chú ý:

Có thể tính diện tích theo công thức như sau:

LG c

Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A.

Phương pháp giải:

Tính chiều cao theo công thức

Lời giải chi tiết:

Gọi  là độ dài đường cao kẻ từ A ta có: 

LG d

Tính các góc của tam giác ABC.

Lời giải chi tiết:

Vì tam giác ABC vuông tại A nên:

Chú ý:

Có thể tính cosB, cosC theo công thức:

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận

Bài giải cùng chuyên mục

Câu 35 trang 68 SGK Hình học 11 Nâng cao Cho hai điểm M, N lần lượt thay đổi trên hai mặt phẳng song song (P) và (Q). Tìm tập hợp các điểm I thuộc đoạn thẳng MN sao cho ({{IM} over {IN}} = k,k ne 0)cho trước
Câu 36 trang 68 SGK Hình học 11 Nâng cao Cho hình lăng trụ đứng tam giác ABC.A’B’C’. Gọi H là trung điểm của cạnh A’B’.
Câu 37 trang 68 SGK Hình học 11 Nâng cao Cho hình hộp ABCD.A’B’C’D’. Chứng minh rẳng a. mp(BDA’) // mp(B’D’C) b.Đường chéo AC’ đi qua các trọng tâm G1, G2 của hai tam giác BDA’ và B’D’C
Câu 38 trang 68 SGK Hình học 11 Nâng cao Chứng minh rẳng tổng bình phương tất cả các đường chéo của một hình hộp bằng tổng bình phương tất cả các cạnh của hình hộp đó
Câu 39 trang 68 SGK Hình học 11 Nâng cao Cho hình chóp cụt ABC.A’B’C’ có đáy lớn ABC và các cạnh bên AA’, BB’, CC’. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA và M’, N’, P’ lần lượt là trung điểm của các cạnh A’B’, B’C’, C’A’. Chứng minh MNP.M’N’P’ là hình chóp cụt
Xem thêm
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi