GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 12 trang 191 SGK Đại số và Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn từng điều kiện sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\(z^2\) là số thực âm;

Phương pháp giải:

Giả sử \(z=x+yi\), thay vào điều kiện bài cho tìm mối liên hệ x,y.

Lời giải chi tiết:

Giả sử \(z=x+yi\)

\({z^2} = {\left( {x + yi} \right)^2} = {x^2} - {y^2} + 2xyi\)

\(z^2\) là số thực âm

\( \Leftrightarrow \left\{ \begin{array}{l}
xy = 0\\
{x^2} - {y^2} < 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x = 0\\
y = 0
\end{array} \right.\\
{x^2} < {y^2}
\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 0\\
0 < {y^2}
\end{array} \right.\\
\left\{ \begin{array}{l}
y = 0\\
{x^2} < 0\left( {VN} \right)
\end{array} \right.
\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
y \ne 0
\end{array} \right.\)

Vậy tập hợp các điểm cần tìm là trục \(Oy\) trừ điểm \(O\).

LG b

\(z^2\) là là số ảo;

Lời giải chi tiết:

\({z^2} = {x^2} - {y^2} + 2xyi\)

\(z^2\) là số ảo \( \Leftrightarrow {x^2} - {y^2} = 0 \Leftrightarrow x = y\) hoặc \(y = -x\)

Vậy tập hợp các điểm cần tìm là hai đường phân giác của các gốc tọa độ.

LG c

\({z^2} = {\left( {\overline z } \right)^2}\);

Lời giải chi tiết:

\(z = x + yi \Rightarrow \overline z  = x - yi\)

Ta có \({z^2} = {\left( {\overline z } \right)^2} \) \(\Leftrightarrow {x^2} - {y^2} + 2xyi ={x^2} - {y^2} - 2xyi\) \(\Leftrightarrow xy = 0 \) \(\Leftrightarrow \left[ \matrix{  x = 0 \hfill \cr  y = 0 \hfill \cr}  \right.\)

Vậy tập hợp các điểm cần tìm là các trục tọa độ.

LG d

\({1 \over {z - i}}\) là số ảo.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\dfrac{1}{{z - i}} = \dfrac{1}{{x + yi - i}} = \dfrac{1}{{x + \left( {y - 1} \right)i}}\\
= \dfrac{{x - \left( {y - 1} \right)i}}{{\left[ {x + \left( {y - 1} \right)i} \right]\left[ {x - \left( {y - 1} \right)i} \right]}}\\
= \dfrac{{x - \left( {y - 1} \right)i}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}\\
= \dfrac{x}{{{x^2} + {{\left( {y - 1} \right)}^2}}} - \dfrac{{y - 1}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}i
\end{array}\)

\(\dfrac{1}{{z - i}}\) là số ảo nếu:

\(\begin{array}{l}
\dfrac{x}{{{x^2} + {{\left( {y - 1} \right)}^2}}} = 0\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
{x^2} + {\left( {y - 1} \right)^2} \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
{\left( {y - 1} \right)^2} \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
y \ne 1
\end{array} \right.
\end{array}\)

Vậy tập hợp các điểm cầm tìm là trục ảo trừ điểm \(I(0; 1)\) biểu diễn số \(i\).

Cách khác:

\({1 \over {z - i}}\) là số ảo \( \Leftrightarrow z - i\) là số ảo và \(z \ne i \Leftrightarrow z\) là số ảo khác i.

Vậy tập hợp các điểm cầm tìm là trục ảo trừ điểm \(I(0; 1)\) biểu diễn số \(i\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved