GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 14 trang 191 SGK Đại số và Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Cho số phức \(z=x+yi\). Khi \(z \ne i\), hãy tìm phần thực và phần ảo của số phức \({{z + i} \over {z - i}}\)

Phương pháp giải:

Thực hiện chia hai số phức \(\dfrac{{a + bi}}{{c + di}} = \dfrac{{\left( {a + bi} \right)\left( {c - di} \right)}}{c^2+d^2}\)

Lời giải chi tiết:

Ta có:

\(\displaystyle {{z + i} \over {z - i}} = {{x + \left( {y + 1} \right)i} \over {x + \left( {y - 1} \right)i}} \) \(\displaystyle = {{\left[ {x + \left( {y + 1} \right)i} \right]\left[ {x - \left( {y - 1} \right)i} \right]} \over {{x^2} + {{\left( {y - 1} \right)}^2}}} \) \(\displaystyle  = \frac{{{x^2} + \left( {xy + x} \right)i - \left( {xy - x} \right)i - \left( {{y^2} - 1} \right){i^2}}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}\) \(\displaystyle  = \frac{{{x^2} + 2xi + \left( {{y^2} - 1} \right)}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}\) \(\displaystyle = {{{x^2} + {y^2} - 1} \over {{x^2} + {{\left( {y - 1} \right)}^2}}} + {{2x} \over {{x^2} + {{\left( {y - 1} \right)}^2}}}i\)

Vậy phần thực là \(\displaystyle {{{x^2} + {y^2} - 1} \over {{x^2} + {{\left( {y - 1} \right)}^2}}}\), phần ảo là \(\displaystyle {{2x} \over {{x^2} + {{\left( {y - 1} \right)}^2}}}\).

LG b

Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn điều kiện \({{z + i} \over {z - i}}\) là số thực dương. 

Phương pháp giải:

Số phức z=a+bi là số thực dương nếu b=0 và a>0.

Lời giải chi tiết:

Với \(z \ne i\), 

Theo câu a, \(\dfrac{{z + i}}{{z - i}} \) \( = \dfrac{{{x^2} + {y^2} - 1}}{{{x^2} + {{\left( {y - 1} \right)}^2}}} + \dfrac{{2x}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}i\)

Nên để \(\dfrac{{z + i}}{{z - i}}\) là số thực dương thì \(\left\{ \begin{array}{l}\dfrac{{2x}}{{{x^2} + {{\left( {y - 1} \right)}^2}}} = 0\\\dfrac{{{x^2} + {y^2} - 1}}{{{x^2} + {{\left( {y - 1} \right)}^2}}} > 0\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}x = 0\\{x^2} + {\left( {y - 1} \right)^2} \ne 0\\{x^2} + {y^2} - 1 > 0\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}x = 0\\{\left( {y - 1} \right)^2} \ne 0\\{y^2} - 1 > 0\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y \ne 1\\\left[ \begin{array}{l}y > 1\\y <  - 1\end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0,y > 1\\x = 0,y <  - 1\end{array} \right.\)

Vậy quỹ tích điểm cần tìm là trục ảo bỏ đi đoạn thẳng IJ, trong đó I(0; 1); J(0; -1).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved