Bài 16 trang 28 SKG Hình học 12 Nâng cao

Đề bài

Hãy chia một khối tứ diện thành hai khối tứ diện sao cho tỉ số thể tích của hai khối tứ diện này bằng một số \(k>0\) cho trước.

Lời giải chi tiết

Cho khối tứ diện \(ABCD\).

Trên cạnh \(BC\) lấy một điểm \(M\).

Ta thấy \(d\left( {A,\left( {BMD} \right)} \right) = d\left( {A,\left( {CMD} \right)} \right)\)

Khi đó,

\(\begin{array}{l}
\frac{{{V_{A.BMD}}}}{{{V_{A.CMD}}}} = \frac{{\frac{1}{3}{S_{BMD}}.d\left( {A,\left( {BMD} \right)} \right)}}{{\frac{1}{3}{S_{CMD}}.d\left( {A,\left( {CMD} \right)} \right)}}\\
= \frac{{{S_{BMD}}}}{{{S_{CMD}}}} = \frac{{BM}}{{CM}} 
\end{array}\)

Do đó \(\frac{{{V_{A.BMD}}}}{{{V_{A.CMD}}}} = k \Leftrightarrow \frac{{BM}}{{CM}} = k\)

Vậy lấy điểm M sao cho BM=kCM ta được mặt phẳng \((AMD)\) chia khối tứ diện \(ABCD\) thành hai khối tứ diện có tỉ số thể tích bằng \(k\).

Chú ý:

Ngoài cạnh BC thì có thể chọn các cạnh khác của tứ diện để lấy điểm M, chẳng hạn CM=kMD hay AM=kMD ta đều chia được thỏa mãn bài toán.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved