Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Cho hai điểm \(A\left( {1; - 1; - 2} \right)\,\,;\,\,B\left( {3;1;1} \right)\) và mặt phẳng (P): \(x - 2y + 3z - 5 = 0\).
LG a
Tìm tọa độ điểm A’ đối xứng với điểm A qua mp(P).
Lời giải chi tiết:
+ Viết phương trình đường thẳng d đi qua A và (d) ⊥ mp(P).
Đường thẳng (d) đi qua A(1, -1, -2) và nhận vectơ pháp tuyến của mp(P) là \(\overrightarrow n = \left( {1; - 2;3} \right)\) là vectơ chỉ phương, nên đường thẳng (d) có phương trình \(\left\{ \begin{array}{l}x = 1 + t\\y = - 1 - 2t\\z = - 2 + 3t\end{array} \right.\)
+ Tìm tọa độ giao điểm H của d và mp(P)
Tọa độ của H là nghiệm của hệ
\(\left\{ \begin{array}{l}x = 1 + t\\y = - 1 - 2t\\z = - 2 + 3t\\x - 2y + 3z - 5 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 1 + t\\y = - 1 - 2t\\z = - 2 + 3t\\1 + t - 2\left( { - 1 - 2t} \right) + 3\left( { - 2 + 3t} \right) - 5 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 1 + t\\y = - 1 - 2t\\z = - 2 + 3t\\ - 8 + 14t = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \dfrac{4}{7}\\x = \dfrac{{11}}{7}\\y = - \dfrac{{15}}{7}\\z = - \dfrac{2}{7}\end{array} \right.\) \( \Rightarrow H\left( {\dfrac{{11}}{7}; - \dfrac{{15}}{7}; - \dfrac{2}{7}} \right)\)
+ Vì A và A’ đối xứng với nhau qua mp(P) nên H chính là trung điểm của AA’, ta có:
\(\left\{ \begin{array}{l}{x_A} + {x_{A'}} = 2{x_H}\\{y_A} + {y_{A'}} = 2{y_H}\\{z_A} + {z_{A'}} = 2{z_H}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}1 + {x_{A'}} = \dfrac{{22}}{7}\\ - 1 + {y_{A'}} = - \dfrac{{30}}{7}\\ - 2 + {z_{A'}} = - \dfrac{4}{7}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_{A'}} = \dfrac{{15}}{7}\\{y_{A'}} = - \dfrac{{23}}{7}\\{z_{A'}} = \dfrac{{10}}{7}\end{array} \right.\)
Cách khác:
Điểm \(A'\left( {{x_0};{y_0};{z_0}} \right)\) đối xứng với A qua mp(P) khi và chỉ khi:
+) \(\overrightarrow {AA'} = \left( {{x_0} - 1,{y_0} + 1,{z_0} + 2} \right)\) là một vectơ pháp tuyến của (P)
+) Trung điểm \(I\left( {{{{x_0} + 1} \over 2};{{{y_0} - 1} \over 2};{{{z_0} - 2} \over 2}} \right)\) của AA’ nằm trên (P).
\(\left( P \right)\) có VTPT \(\overrightarrow n = \left( {1; - 2;3} \right)\) \( \Rightarrow \overrightarrow {AA'} \) cùng phương \(\overrightarrow n \)
\( \Leftrightarrow \dfrac{{{x_0} - 1}}{1} = \dfrac{{{y_0} + 1}}{{ - 2}} = \dfrac{{{z_0} + 2}}{3} = t\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 1 + t\\{y_0} = - 1 - 2t\\{z_0} = - 2 + 3t\end{array} \right.\)
Lại có \(I \in \left( P \right)\) nên \(\dfrac{{{x_0} + 1}}{2} - 2.\dfrac{{{y_0} - 1}}{2} + 3.\dfrac{{{z_0} - 2}}{2} - 5 = 0\)
\( \Leftrightarrow \dfrac{{2 + t}}{2} - \left( { - 2 - 2t} \right) + 3.\dfrac{{ - 4 + 3t}}{2} - 5 = 0\)
\(\begin{array}{l} \Leftrightarrow 2 + t + 4 + 4t - 12 + 9t - 10 = 0\\ \Leftrightarrow 14t - 16 = 0 \Leftrightarrow t = \dfrac{8}{7}\\ \Rightarrow \left\{ \begin{array}{l}{x_0} = \dfrac{{15}}{7}\\{y_0} = - \dfrac{{23}}{7}\\{z_0} = \dfrac{{10}}{7}\end{array} \right.\end{array}\)
Vậy \(A'\left( {{{15} \over 7}; - {{23} \over 7};{{10} \over 7}} \right)\)
LG b
Tìm góc giữa đường thẳng AB và mp(P).
Lời giải chi tiết:
Ta có \(\overrightarrow {AB} = \left( {2;2;3} \right)\); mp(P) có vectơ pháp tuyến \(\overrightarrow {{n_{(P)}}} = \left( {1; - 2;3} \right)\).
Gọi \(\varphi \) là góc giữa đường thẳng AB và mp(P) ta có \(0 \le \varphi \le {90^0}\) và \(\sin \varphi = {{\left| {\overrightarrow {AB} .\overrightarrow {{n_{(P)}}} } \right|} \over {\left| {\overrightarrow {AB} .\left| {\overrightarrow {{n_{(P)}}} } \right|} \right|}} = {{\left| {2 - 4 + 9} \right|} \over {\sqrt {17.14} }} = {7 \over {\sqrt {238} }}\).
LG c
Viết phương trình mặt phẳng (Q) đi qua A, B và vuông góc với mp(P).
Lời giải chi tiết:
Gọi \(\overrightarrow {{n_{(Q)}}} \) là vectơ pháp tuyến của mp(Q) thì \(\overrightarrow {{n_{(Q)}}} \) \( \bot \) \(\overrightarrow {AB} \); \(\overrightarrow {{n_{(Q)}}} \) \( \bot \) \(\overrightarrow {{n_{(P)}}} \) nên chọn
\(\overrightarrow {{n_{(Q)}}} = \left[ {\overrightarrow {AB} ;\overrightarrow {{n_{(P)}}} } \right] = \left( {12; - 3; - 6} \right)\)
Phương trình mặt phẳng (Q) là:
\(12\left( {x - 1} \right) - 3\left( {y + 1} \right) - 6\left( {z + 2} \right) = 0\) \( \Leftrightarrow 4x - y - 2z - 9 = 0\).
LG d
Tìm tọa độ giao điểm I của đường thẳng AB và mp(P). Viết phương trình đường thẳng \(\Delta \) nằm trong (P), đi qua I và vuông góc với AB.
Lời giải chi tiết:
Tọa độ của I thỏa mãn hệ phương trình
\(\eqalign{
& \left\{ \matrix{
x = 1 + 2t \hfill \cr
y = - 1 + 2t \hfill \cr
z = - 2 + 3t \hfill \cr
x - 2y + 3z - 5 = 0 \hfill \cr} \right. \cr
& \Rightarrow 1 + 2t - 2\left( { - 1 + 2t} \right) + 3\left( { - 2 + 3t} \right) - 5 = 0\cr & \Rightarrow t = {8 \over 7} \cr} \)
Vậy \(I\left( {{{23} \over 7};{9 \over 7};{{10} \over 7}} \right).\)
Gọi \(\overrightarrow u \) và vectơ chỉ phương của \(\Delta \) thì \(\overrightarrow u \) \( \bot \) \(\overrightarrow {{n_{(P)}}} \,\); \(\overrightarrow u \bot \overrightarrow {AB} \) nên chọn
\(\overrightarrow u = \left[ {\overrightarrow {{n_{(P)}}} ;\overrightarrow {AB} } \right] \) \(= \left( { - 12;3;6} \right) = - 3\left( {4; - 1; - 2} \right)\).
Vậy \(\Delta \) có phương trình tham số là
\(\left\{ \matrix{
x = {{23} \over 7} + 4t \hfill \cr
y = {9 \over 7} - t \hfill \cr
z = {{10} \over 7} - 2t \hfill \cr} \right.\)
Đề kiểm tra 45 phút (1 tiết ) – Chương 7 – Hóa học 12
CHƯƠNG X. TỪ VI MÔ ĐẾN VĨ MÔ
ĐỀ THI THỬ THPT QUỐC GIA MÔN LỊCH SỬ
Unit 15. Women in Society
Tải 30 đề thi học kì 2 - Hóa học 12