Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Đề bài
Cho vectơ \(\overrightarrow u \) tùy ý khác \(\overrightarrow 0 \). Chứng minh rằng \({\cos ^2}\left( {\overrightarrow u ,\overrightarrow i } \right) + {\cos ^2}\left( {\overrightarrow u ,\overrightarrow j } \right) \) \(+ {\cos ^2}\left( {\overrightarrow u ,\overrightarrow k } \right) = 1\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính cô sin góc giữa hai véc tơ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\)
Lời giải chi tiết
Giả sử \(\overrightarrow u = \left( {x;y;z} \right)\) ta có:
\(\cos \left( {\overrightarrow u ,\overrightarrow i } \right) = {{\overrightarrow u .\overrightarrow i } \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow i } \right|}} = {x \over {\sqrt {{x^2} + {y^2} + {z^2}} }} \) \(\Rightarrow {\cos ^2}\left( {\overrightarrow u ,\overrightarrow i } \right) = {{{x^2}} \over {{x^2} + {y^2} + {z^2}}}\)
Tương tự: \({\cos ^2}\left( {\overrightarrow u ,\overrightarrow j } \right) = {{{y^2}} \over {{x^2} + {y^2} + {z^2}}}\) và \({\cos ^2}\left( {\overrightarrow u ,\overrightarrow k } \right) = {{{z^2}} \over {{x^2} + {y^2} + {z^2}}}\).
Vậy
\({\cos ^2}\left( {\overrightarrow u ,\overrightarrow i } \right) + {\cos ^2}\left( {\overrightarrow u ,\overrightarrow j } \right) \) \(+ {\cos ^2}\left( {\overrightarrow u ,\overrightarrow k } \right) = {{{x^2} + {y^2} + {z^2}} \over {{x^2} + {y^2} + {z^2}}} = 1\)
Unit 4. The Mass Media
Bài 10. Thiên nhiên nhiệt đới ẩm gió mùa (tiếp theo)
Đề kiểm tra 45 phút kì I - Lớp 12
CHƯƠNG III. HỆ CƠ SỞ DỮ LIỆU QUAN HỆ
Đề thi giữa học kì 1