Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Đề bài
Cho vectơ \(\overrightarrow u \) tùy ý khác \(\overrightarrow 0 \). Chứng minh rằng \({\cos ^2}\left( {\overrightarrow u ,\overrightarrow i } \right) + {\cos ^2}\left( {\overrightarrow u ,\overrightarrow j } \right) \) \(+ {\cos ^2}\left( {\overrightarrow u ,\overrightarrow k } \right) = 1\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính cô sin góc giữa hai véc tơ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\)
Lời giải chi tiết
Giả sử \(\overrightarrow u = \left( {x;y;z} \right)\) ta có:
\(\cos \left( {\overrightarrow u ,\overrightarrow i } \right) = {{\overrightarrow u .\overrightarrow i } \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow i } \right|}} = {x \over {\sqrt {{x^2} + {y^2} + {z^2}} }} \) \(\Rightarrow {\cos ^2}\left( {\overrightarrow u ,\overrightarrow i } \right) = {{{x^2}} \over {{x^2} + {y^2} + {z^2}}}\)
Tương tự: \({\cos ^2}\left( {\overrightarrow u ,\overrightarrow j } \right) = {{{y^2}} \over {{x^2} + {y^2} + {z^2}}}\) và \({\cos ^2}\left( {\overrightarrow u ,\overrightarrow k } \right) = {{{z^2}} \over {{x^2} + {y^2} + {z^2}}}\).
Vậy
\({\cos ^2}\left( {\overrightarrow u ,\overrightarrow i } \right) + {\cos ^2}\left( {\overrightarrow u ,\overrightarrow j } \right) \) \(+ {\cos ^2}\left( {\overrightarrow u ,\overrightarrow k } \right) = {{{x^2} + {y^2} + {z^2}} \over {{x^2} + {y^2} + {z^2}}} = 1\)
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Hóa học lớp 12
Đề kiểm tra 15 phút - Chương 8 – Hóa học 12
Chương 5. Đại cương về kim loại
SBT tiếng Anh 12 mới tập 1
Bài 24. Vấn đề phát triển ngành thủy sản và lâm nghiệp