Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Đề bài
Một mặt cầu gọi là nội tiếp hình nón nếu nó tiếp xúc với mặt đáy của hình nón và tiếp xúc với mọi đường sinh của hình nón. Khi đó hình nón được gọi là ngoại tiếp mặt cầu.
a) Chứng minh rằng mọi hình nón đều có một mặt cầu nội tiếp duy nhất.
b) Một hình nón có chiều cao \(h\) và bán kính đáy bằng \(r\). Hãy tính bán kính mặt cầu nội tiếp hình nón đó.
Lời giải chi tiết
a) Cho hình nón có đỉnh \(S\) và đáy là đường tròn \((O;r)\).
Tâm \(I\) của mặt cầu nội tiếp hình nón nằm trên \(SO\).
Lấy điểm \(A\) cố định trên \((O;r)\) thì \(I\) là giao điểm của \(SO\) với đường phân giác trong của góc \(A\) của \(\Delta SAO\).
\(I\) hoàn toàn xác định và là tâm mặt cầu nội tiếp hình nón, bán kính mặt cầu là \(R = IO\).
b) Ta có: \(SA = \sqrt {O{S^2} + O{A^2}} \) \(= \sqrt {{h^2} + {r^2}} \)
Theo tính chất đường phân giác ta có:
\({{IO} \over {IS}} = {{OA} \over {SA}}\)
\( \Rightarrow {{SA} \over {SI}} = {{OA} \over {IO}} \) \(= {{SA + OA} \over {SI + IO}}\)
\(\Rightarrow {{IO} \over {IO + IS}} = {{OA} \over {OA + SA}} \)
\(\Rightarrow {{IO} \over h} = {r \over {r + \sqrt {{h^2} + {r^2}} }}\)
Vậy bán kính mặt cầu nội tiếp là \(R = IO = {{rh} \over {r + \sqrt {{h^2} + {r^2}} }}\)
Các dạng bài nghị luận văn học liên hệ, so sánh
Bài 41. Vấn đề sử dụng hợp lí và cải tạo tự nhiên ở Đồng bằng sông Cửu Long
Bài 23. Thực hành: Phân tích sự chuyển dịch cơ cấu ngành trồng trọt
SBT tiếng Anh 12 mới tập 1
Review 3