Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Đề bài
Cho khối lăng trụ tam giác đều \(ABC.A'B’C\). Gọi \(M\) là trung điểm của \(AA’\). Mặt phẳng đi qua \(M, B’, C\) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.
Phương pháp giải - Xem chi tiết
+) Tính thể tích khối chóp C.ABB'M.
- Kẻ đường cao CH của tam giác ABC.
- Chứng minh \(CH\bot(ABB'M)\).
- Tính thể tích khối chóp \(V = \frac{1}{3}Sh\)
+) Tính thể tích khối lăng trụ ABC.A'B'C'.
\(V = Bh\)
+) Tính thể tích khối đa diện còn lại và suy ra tỉ số.
Lời giải chi tiết
Gọi độ dài cạnh đáy của lăng trụ là \(a\), độ dài cạnh bên của lăng trụ là \(b\).
Kẻ đường cao \(CH\) của tam giác \(ABC\).
Ta có:
\(\left\{ \begin{array}{l}CH \bot AB\\CH \bot AA'\left( {AA' \bot \left( {ABC} \right)} \right)\end{array} \right.\) \( \Rightarrow CH \bot \left( {ABB'A'} \right)\)
\( \Rightarrow CH \bot \left( {ABB'M} \right)\).
\( \Rightarrow {V_{C.ABB'M}} = \frac{1}{3}CH.{S_{ABB'M}}\)
+) \(CH = \sqrt {A{C^2} - A{H^2}} \) \( = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\)
+) Diện tích hình thang \(ABB’M\) là: \({S_{ABB'M}} = {1 \over 2}\left( {AM + BB'} \right)AB\) \( = {1 \over 2}\left( {{b \over 2} + b} \right).a = {{3ab} \over 4}\)
Thể tích khối chóp \(C.ABB’M\) là: \({V_{C.ABB'M}} = {1 \over 3}{S_{ABB'M}}.CH \) \(= {1 \over 3}{{3ab} \over 4}.{{a\sqrt 3 } \over 2} = {{{a^2}b\sqrt 3 } \over 8}\)
Lại có \({S_{ABC}} = \frac{1}{2}CH.AB\)\( = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^2}\sqrt 3 }}{4}\)
Vậy thể tích khối lăng trụ là: \({V_{ABC.A'B'C'}} = {S_{ABC}}.AA' \) \(= {{{a^2}\sqrt 3 } \over 4}.b = {{{a^2}b\sqrt 3 } \over 4} \)
\(\begin{array}{l}
\Rightarrow {V_{CC'ABM}} = {V_{ABC.A'B'C'}} - {V_{C.ABB'M}}\\
= \frac{{{a^2}b\sqrt 3 }}{4} - \frac{{{a^2}b\sqrt 3 }}{8} = \frac{{{a^2}b\sqrt 3 }}{8}\\
\Rightarrow \frac{{{V_{C.ABB'M}}}}{{{V_{CC'ABM}}}} = 1
\end{array}\)
Chú ý: Có thể chứng minh được hai khối chóp \(C.ABB’M\) và \(B’A’C’CM\) có cùng chiều cao và có diện tích đáy bằng nhau nên chúng có thể tích bằng nhau.
Cách khác:
Gọi V, S, h lần lượt là thể tích và diện tích đáy, chiều cao của lăng trụ: V= S.h. V1,V2 lần lượt là thể tích phần lăng trụ bên trên, bên dưới thiết diện MB’C
E = CM ∩ C'A', do M là trung điểm của AA’ nên A’E = A’C’
SΔEA'B'=SΔA'B'C' =S
Ta có:
ĐỀ THI THỬ THPT QUỐC GIA MÔN ĐỊA LÍ
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Tiếng Anh lớp 12
Đề kiểm tra 15 phút - Học kì 1 - Ngữ Văn 12
CHƯƠNG 10. HỆ SINH THÁI, SINH QUYỂN VÀ BẢO VỆ MÔI TRƯỜNG
Tác giả - Tác phẩm tập 2