Bài 22 trang 90 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho tứ diện OABC có các tam giác OAB, OBC, OCA là những tam giác vuông đỉnh O. Gọi \(\alpha ,\beta ,\gamma \) lần lượt là góc giữa mặt phẳng (ABC) và các mặt phẳng (OBC), (OCA), (OAB). Bằng phương pháp toạ độ, hãy chứng minh :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tam giác ABC có ba góc nhọn.

Phương pháp giải:

Sử dụng tính chất: Góc có cô sin dương thì là góc nhọn.

Lời giải chi tiết:

Chọn hệ trục tọa độ Oxyz như hình vẽ.
Ta có \(A\left( {a;0;0} \right)\,,\,B\left( {0;b;0} \right)\,,\,C\left( {0;0;c} \right)\) \(\left( {a > 0,b > 0,c > 0} \right)\)
Ta có \(\overrightarrow {AB}  = \left( { - a;b;0} \right);\overrightarrow {AC}  = \left( { - a;0;c} \right) \) \(\Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = {a^2} > 0 \) \(\Rightarrow \cos A = {{\overrightarrow {AB} .\overrightarrow {AC} } \over {AB.AC}} > 0\)

\( \Rightarrow \) A là góc nhọn.

Tương tự các góc B, C của tam giác ABC cũng nhọn.

LG b

\({\cos ^2}\alpha  + co{s^2}\beta  + {\cos ^2}\gamma  = 1\)

Lời giải chi tiết:

Mp(ABC) có phương trình \({x \over a} + {y \over b} + {z \over c} = 1\) nên có vectơ pháp tuyến \(\overrightarrow n  = \left( {{1 \over a};{1 \over b};{1 \over c}} \right)\).
Mp(OBC) \( \equiv \) Mp(Oyz) có vectơ pháp tuyến \(\overrightarrow i  = \left( {1;0;0} \right)\).
Gọi \(\alpha \) là góc giữa mp(ABC) và mp(OBC) thì:

\({\cos ^2}\alpha  = {\left( {{{\left| {\overrightarrow n .\overrightarrow i } \right|} \over {\left| {\overrightarrow n } \right|\left| {\overrightarrow i } \right|}}} \right)^2} = {{{1 \over {{a^2}}}} \over {{1 \over {{a^2}}} + {1 \over {{b^2}}} + {1 \over {{c^2}}}}}\)

Tương tự \({\cos ^2}\beta  = {{{1 \over {{b^2}}}} \over {{1 \over {{a^2}}} + {1 \over {{b^2}}} + {1 \over {{c^2}}}}}\) và \({\cos ^2}\gamma  = {{{1 \over {{c^2}}}} \over {{1 \over {{a^2}}} + {1 \over {{b^2}}} + {1 \over {{c^2}}}}}\)

Từ đó suy ra \({\cos ^2}\alpha  + co{s^2}\beta  + {\cos ^2}\gamma  = 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved