Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Đề bài
Cho khối chóp tam giác \(S.ABC\). Trên ba đường thẳng \(SA, SB,SC\) lần lượt lấy ba điểm \(A’, B’, C'\) khác với \(S\). Gọi \(V\) và \(V’\) lần lượt là thể tích của các khối chóp \(S.ABC\) và \(S.A'B'C'\). Chứng minh rằng:
\({V \over {V'}} = {{SA} \over {SA'}}.{{SB} \over {SB'}}.{{SC} \over {SC'}}\)
Lời giải chi tiết
Gọi \(H\) và \(H’\) lần lượt là hình chiếu của \(A\) và \(A’\) trên mp \((SBC)\). Khi đó \(3\) điểm \(S, H, H’\) thẳng hàng (vì chúng là hình chiếu của ba điểm thẳng hàng \(S, A, A’\) trên mp \((SBC)\)) và vì \(A’H’ // AH\) nên \({{AH} \over {A'H'}} = {{SA} \over {SA'}}\). Ta có:
\({{{S_{SBC}}} \over {{S_{SB'C'}}}} = {{{1 \over 2}SB.SC.sin\widehat {BSC}} \over {{1 \over 2}SB'.SC'.sin\widehat {B'SC'}}} = {{SB} \over {SB'}}.{{SC} \over {SC'}}\)
Suy ra \({V \over {V'}} = {{{V_{A.SBC}}} \over {{V_{A'.SB'C'}}}} = {{{1 \over 3}{S_{SBC}}.AH} \over {{1 \over 3}{S_{SB'C'}}.A'H'}} = {{SA} \over {SA'}}.{{SB} \over {SB'}}.{{SC} \over {SC'}}\)
Unit 4: School Education System - Hệ thống giáo dục nhà trường
Đề kiểm tra 45 phút - Chương 1 – Hóa học 12
Unit 1. Life Stories
CHƯƠNG III. SÓNG CƠ
Tải 10 đề kiểm tra 15 phút - Chương 6 – Hóa học 12