Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Cho đường thẳng
\(d:\left\{ \matrix{
x = t \hfill \cr
y = 8 + 4t \hfill \cr
z = 3 + 2t \hfill \cr} \right.\)
và mặt phẳng \(\left( P \right):x + y + z - 7 = 0\).
LG a
Tìm một vectơ chỉ phương của d và một điểm nằm trên d.
Lời giải chi tiết:
Một vectơ chỉ phương của d là \(\overrightarrow u = \left( {1;4;2} \right)\). Cho t = 0 ta có một điểm \({M_0}\left( {0;8;3} \right)\) nằm trên d.
LG b
Viết phương trình mặt phẳng đi qua d và vuông góc với mp(P).
Lời giải chi tiết:
Vectơ pháp tuyến của mp(P) là \({\overrightarrow n _P} = \left( {1;1;1} \right)\).
Gọi \(\left( \alpha \right)\)là mặt phẳng đi qua d và vuông góc với cả \(\overrightarrow u \) và \({\overrightarrow n _P}\) nên ta lấy \({\overrightarrow n _{\left( \alpha \right)}} = \left[ {\overrightarrow u ;{{\overrightarrow n }_P}} \right] = \left( {2;1; - 3} \right)\).
\(Mp\left( \alpha \right)\) đi qua \({M_0}\left( {0;8;3} \right)\) và có vectơ pháp tuyến \({\overrightarrow n _\alpha } = \left( {2;1; - 3} \right)\) nên có phương trình là: \(2\left( {x - 0} \right) + 1\left( {y - 8} \right) - 3\left( {z - 3} \right) = 0\) \( \Leftrightarrow 2x + y - 3z + 1 = 0\)
LG c
Viết phương trình hình chiếu vuông góc của d trên mp(P).
Lời giải chi tiết:
Vì d không vuông góc với (P) nên hình chiếu của d trên (P) là đường thẳng d’, d’ là giao tuyến của \(\left( \alpha \right)\) và (P):
\(\left\{ \matrix{
x + y + z - 7 = 0 \hfill \cr
2x + y - 3z + 1 = 0 \hfill \cr} \right.\)
Cho z = 0 ta có x = – 8; y = 15, d’ qua A(– 8; 15; 0).
Ta có:
\(\begin{array}{l}
\overrightarrow {{n_{\left( P \right)}}} = \left( {1;1;1} \right)\\
\overrightarrow {{n_{\left( \alpha \right)}}} = \left( {2;1; - 3} \right)\\
\Rightarrow \left[ {\overrightarrow {{n_{\left( P \right)}}} ,\overrightarrow {{n_{\left( \alpha \right)}}} } \right] = \left( { - 4;5; - 1} \right)
\end{array}\)
d’ đi qua A(– 8; 15; 0) và nhận \(\overrightarrow u = \left[ {\overrightarrow {{n_{\left( P \right)}}} ,\overrightarrow {{n_{\left( \alpha \right)}}} } \right] = \left( { - 4;5; - 1} \right)\) làm VTCP nên có phương trình tham số là:
\(\left\{ \matrix{
x = - 8 - 4t \hfill \cr
y = 15 + 5t \hfill \cr
z = - t \hfill \cr} \right.\)
CHƯƠNG 8. PHÂN BIỆT MỘT SỐ CHẤT VÔ CƠ CHUẨN ĐỘ DUNG DỊCH
Chương 9: Hóa học và vấn đề phát triển kinh tế, xã hội và môi trường
CHƯƠNG I. DAO ĐỘNG CƠ
Đề thi THPT QG chính thức các năm
PHẦN 2: LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NĂM 2000