Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Tìm góc giữa hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) trong mỗi trường hợp sau:
LG a
\(\overrightarrow u = \left( {1\,;\,1\,;\,1} \right),\overrightarrow v = \left( {2\,;\,1\,;\, - 1} \right)\).
Phương pháp giải:
Sử dụng công thức tính cô sin góc giữa hai véc tơ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\)
Lời giải chi tiết:
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = {{\overrightarrow u .\overrightarrow v } \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow i } \right|}}\) \( = \frac{{1.2 + 1.1 + 1.\left( { - 1} \right)}}{{\sqrt {1 + 1 + 1} .\sqrt {4 + 1 + 1} }}\) \( = {2 \over {\sqrt 3 .\sqrt 6 }} = {{\sqrt 2 } \over 3}\)
LG b
\(\overrightarrow u = 3\overrightarrow i + 4\overrightarrow j \,\,;\,\,\overrightarrow v = - 2\overrightarrow j + 3\overrightarrow k \).
Lời giải chi tiết:
Ta có: \(\overrightarrow u = \left( {3;4;0} \right)\,;\,\overrightarrow v = \left( {0; - 2;3} \right) \)
\(\Rightarrow \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = {{\overrightarrow u .\overrightarrow v } \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}\) \( = \frac{{3.0 + 4.\left( { - 2} \right) + 0.\left( { - 3} \right)}}{{\sqrt {9 + 16 + 0} .\sqrt {0 + 4 + 9} }} \) \(= \frac{{ - 8}}{{5\sqrt {13} }}\) \( = {{ - 8\sqrt {13} } \over {65}}\)
Chương 8. Cá thể và quần thể sinh vật
Unit 5. Cultural Identity
Đề kiểm tra 45 phút - Chương 3 – Hóa học 12
Unit 13. The 22nd SEA Games
Tác giả - Tác phẩm tập 2