Bài 32 trang 104 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho đường thẳng d và mặt phẳng \(\left( \alpha  \right)\) có phương trình:

\(d:{{x - 2} \over 2} = {{y + 1} \over 3} = {{z - 1} \over 5}\) \(\left( \alpha  \right):2x + y + z - 8 = 0\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Tìm góc giữa d và \(\left( \alpha  \right)\).

Phương pháp giải:

Công thức tính góc giữa đường thẳng và mp: \(\sin \varphi  = {{\left| {\overrightarrow u .\overrightarrow n } \right|} \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} \)

Lời giải chi tiết:

Đường thẳng d có vectơ chỉ phương \(\overrightarrow u  = \left( {2;3;5} \right)\), \(mp\left( \alpha  \right)\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {2;1;1} \right)\).

Gọi \(\varphi \) là góc giữa d và \(\left( \alpha  \right)\) thì \(0 \le \varphi  \le {90^0}\) và

\(\sin \varphi  = {{\left| {\overrightarrow u .\overrightarrow n } \right|} \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} \) \(= {{\left| {2.2 + 3.1 + 5.1} \right|} \over {\sqrt {4 + 9 + 25} .\sqrt {4 + 1 + 1} }} = {6 \over {\sqrt {57} }}\).

LG b

Tìm tọa độ giao điểm của d và \(\left( \alpha  \right)\).

Phương pháp giải:

Viết d dưới dạng tham số rồi xét hệ phương trình tọa độ giao điểm.

Lời giải chi tiết:

d có phương trình tham số

\(\left\{ \matrix{
x = 2 + 2t \hfill \cr 
y = - 1 + 3t \hfill \cr 
z = 1 + 5t \hfill \cr} \right.\).

Thay x, y, z vào phương trình \(\left( \alpha  \right)\) ta có:

\(2\left( {2 + 2t} \right) + \left( { - 1 + 3t} \right) + \left( {1 + 5t} \right) = 0 \) \(\Leftrightarrow t = {1 \over 3}\)

Ta được giao điểm \(M\left( {{8 \over 3};0;{8 \over 3}} \right)\).

LG c

Viết phương trình hình chiếu vuông góc của d trên \(\left( \alpha  \right)\).

Lời giải chi tiết:

Gọi \(\left( \beta  \right)\) là mặt phẳng đi qua d và vuông góc với \(\left( \alpha  \right)\) thì hình chiếu d’ của d trên \(\left( \alpha  \right)\) là giao tuyến của \(\left( \alpha  \right)\) và \(\left( \beta  \right)\).

Vectơ pháp tuyến \(\overrightarrow {{n_{(\beta )}}} \) của \(\left( \beta  \right)\) vuông góc với cả \(\overrightarrow u \) và \(\overrightarrow n \) nên ta chọn \(\overrightarrow {{n_\beta }}  = \left[ {\overrightarrow u ,\overrightarrow n } \right] = \left( { - 2;8; - 4} \right)\).

Ngoài ra, \(\left( \beta  \right)\) đi qua d nên cũng đi qua điểm \(A\left( {2; - 1;1} \right)\).

Do đó \(\left( \beta  \right)\) có phương trình:
\( - 2\left( {x - 2} \right) + 8\left( {y + 1} \right) - 4\left( {z - 1} \right) = 0\) \( \Leftrightarrow  - x + 4y - 2z + 8 = 0\).
Hình chiếu d’ qua I và có vectơ chỉ phương:

\(\overrightarrow a = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } \right] \) \(= \left( {\left| \matrix{
1\,\,\,\,\,\,\,\,\,\,\,1 \hfill \cr 
4\,\,\,\,\,\, - 2 \hfill \cr} \right|;\,\left| \matrix{
1\,\,\,\,\,\,\,\,2 \hfill \cr 
- 2\,\,\,\,\, - 1\, \hfill \cr} \right|;\left| \matrix{
2\,\,\,\,\,\,\,\,1 \hfill \cr 
- 1\,\,\,\,\,4 \hfill \cr} \right|} \right) \) \(= \left( { - 6;3;9} \right) = 3\left( { - 2;1;3} \right)\)

Vậy d’ có phương trình tham số là 

\(\left\{ \matrix{
x = {8 \over 3} - 2t \hfill \cr 
y = t \hfill \cr 
z = {8 \over 3} + 3t \hfill \cr} \right.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved