Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
Tìm các đường tiệm cận của đồ thị hàm số sau:
LG a
\(y = {{x - 2} \over {3x + 2}}\)
Lời giải chi tiết:
TXĐ: \(D = \mathbb R\backslash \left\{ { - {2 \over 3}} \right\}\)
Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {{x + 2} \over {3x + 2}} = \mathop {\lim }\limits_{x \to + \infty } {{1 - {2 \over x}} \over {3 + {2 \over x}}} = {1 \over 3}\) và \(\mathop {\lim }\limits_{x \to - \infty } y = {1 \over 3}\) nên đường thẳng \(y = {1 \over 3}\) là đường tiệm cận ngang của đồ thị.
Vì \(\mathop {\lim }\limits_{x \to {{\left( { - {2 \over 3}} \right)}^ + }} y = - \infty \) \(\mathop {\lim }\limits_{x \to {{\left( { - {2 \over 3}} \right)}^ - }} y = + \infty \); nên đường thẳng \(x = - {2 \over 3}\) là tiệm cận đứng của đồ thị.
LG b
\(y = {{ - 2x - 2} \over {x + 3}}\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ { - 3} \right\}\)
Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {{ - 2 - {2 \over x}} \over {1 + {3 \over x}}} = - 2\) và \(\mathop {\lim }\limits_{x \to - \infty } y = - 2\) nên đường thẳng \(y = - 2\) là tiệm cận ngang của đồ thị.
Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} y = + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} y = - \infty \) nên đường thẳng \(x = - 3\) là tiệm cận đứng của đồ thị.
LG c
\(y = x + 2 - {1 \over {x - 3}}\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ 3 \right\}\)
Vì \(\mathop {\lim }\limits_{x \to {3^ + }} y = - \infty \) và \(\mathop {\lim }\limits_{x \to {3^ - }} y = + \infty \) nên đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị.
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } {{ - 1} \over {x - 3}} = 0\) và \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } {{ - 1} \over {x - 3}} = 0\) nên đường thẳng \(y = x + 2\) là tiệm cận xiên của đồ thị.
LG d
\(y = {{{x^2} - 3x + 4} \over {2x + 1}}\)
Phương pháp giải:
Đường thẳng y=ax+b (\(a\ne 0\)) là TCX của đồ thị hàm số y=f(x) khi và chỉ khi
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x},b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\)
hoặc \(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x},b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ { - {1 \over 2}} \right\}\)
Vì \(\mathop {\lim }\limits_{x \to {{\left( { - {1 \over 2}} \right)}^ + }} y = + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - {1 \over 2}} \right)}^ - }} y = - \infty \) nên đường thẳng \(x = - {1 \over 2}\) là tiệm cận đứng của đồ thị.
Tiệm cận xiên có dạng \(y = ax + b\)
\(\eqalign{
& a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^2} - 3x + 4} \over {x\left( {2x + 1} \right)}} = {1 \over 2} \cr
& b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - {x \over 2}} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^2} - 3x + 4} \over {2x + 1}} - {x \over 2}} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{ - 7x + 8} \over {2\left( {2x + 1} \right)}} = - {7 \over 4} \cr} \)
\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = + \infty \)
Đường thẳng \(y = {x \over 2} - {7 \over 4}\) là tiệm cận xiên của đồ thị (khi \(x \to + \infty \) và \(x \to - \infty \)).
Cách khác:
Ta có: \(y = {1 \over 2}.{{{x^2} - 3x + 4} \over {x + {1 \over 2}}} = {1 \over 2}\left( {x - {7 \over 2} + {{23} \over {4\left( {x + {1 \over 2}} \right)}}} \right)\)
Vì \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {{x \over 2} - {7 \over 4}} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } {{23} \over {8\left( {x + {1 \over 2}} \right)}} = 0\) nên đường thẳng \(y = {x \over 2} - {7 \over 4}\) là tiệm cận xiên của đồ thị.
LG e
\(y = {{x + 2} \over {{x^2} - 1}}\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;1} \right\}\)
* Vì \(\mathop {\lim }\limits_{x \to \pm \infty } y = 0\) nên đường thẳng y = 0 là tiệm cận ngang của đồ thị.
* \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} {{x + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} {{x + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} = - \infty \) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị.
* \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{x + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} {{x + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} = + \infty \) nên đường thẳng \(x = - 1\) là tiệm cận đứng của đồ thị.
LG f
\(y = {x \over {{x^3} + 1}}\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ { - 1} \right\}\)
* Vì \(\mathop {\lim }\limits_{x \to \pm \infty } y = 0\) nên \(y = 0\) là tiệm cận ngang
* \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = + \infty \) nên \(x = -1\) là tiệm cận đứng.
Chương 2. CACBOHIĐRAT
ĐỀ THI THỬ THPT QUỐC GIA MÔN NGỮ VĂN
PHẦN HAI. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NĂM 2000
SOẠN VĂN 12 TẬP 2
Địa lí Việt Nam