Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Tìm khoảng cách giữa hai đường thẳng sau:
LG a
\(d:\left\{ \matrix{
x = 1 + t \hfill \cr
y = - 1 - t \hfill \cr
z = 1 \hfill \cr} \right.\) và
\(d':\left\{ \matrix{
x = {2 - 3t'} \hfill \cr
y ={ - 2 + 3t'} \hfill \cr
z = 3 \hfill \cr} \right.\)
Phương pháp giải:
- Chứng minh d//d'
- Tính d(d,d')=d(M,d').
Lời giải chi tiết:
Đường thẳng d đi qua \({M_1}\left( {1; - 1;1} \right)\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1; - 1;0} \right)\).
Đường thẳng d’ đi qua điểm \({M_2}\left( {2; - 2;3} \right)\), có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( { - 1;1;0} \right)\). Vì \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương nhưng \(\overrightarrow {{u_1}} \); \(\overrightarrow {{u_2}} \) không cùng phương với \(\overrightarrow {{M_1}{M_2}} = \left( {1; - 1;2} \right)\) nên hai đường thẳng đó song song.
Vậy khoảng cách giữa d và d’ là khoảng cách từ \(M_1\)(1, -1, 1) ∈ d đến đường thẳng d’ và bằng : \(d = \frac{{\left| {\left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{u_2}} } \right]} \right|}}{{\left| {\overrightarrow {{u_2}} } \right|}}\)
Ta có: \(\overrightarrow {{M_1}{M_2}} = \left( {1; - 1;2} \right)\) suy ra \(\left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{u_2}} } \right] = \left( { - 6; - 6;0} \right)\)
Vậy khoảng cách cần tìm là:
\(d = \frac{{\left| {\left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{u_2}} } \right]} \right|}}{{\left| {\overrightarrow {{u_2}} } \right|}}\)\( = \frac{{\sqrt {36 + 36 + 0} }}{{\sqrt {6 + 9} }} = 2\)
LG b
\(d:\,{x \over { - 1}} = {{y - 4} \over 1} = {{z + 1} \over { - 2}}\) và
\(d':\left\{ \matrix{
x ={ - t'} \hfill \cr
y = {2 + 3t'} \hfill \cr
z = {- 4 + 3t'} \hfill \cr} \right.\)
Phương pháp giải:
Khoảng cách giữa hai đường thẳng chéo nhau: \(d = {{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}}\)
Lời giải chi tiết:
Đường thẳng d đi qua \(M\left( {0;4; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 1;1; - 2} \right)\).
Đường thẳng d’ đi qua \(M'\left( {0;2; - 4} \right)\) và có vectơ chỉ phương \(\overrightarrow {u'} = \left( { - 1;3;3} \right)\).
Ta có \(\overrightarrow {MM'} = \left( {0; - 2; - 3} \right);\) \(\left[ {\overrightarrow u ;\overrightarrow {u'} } \right] = \left( {9;5; - 2} \right)\).
\( \Rightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} = - 4 \ne 0 \)
\(\Rightarrow d\) và d’ chéo nhau.
Khoảng cách giữa \({d_1}\) và \({d_2}\) là:
\(d = {{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}} = {4 \over {\sqrt {{9^2} + {5^2} + {2^2}} }} = {{2\sqrt {110} } \over {55}}\)
Vấn đề sử dụng và bảo vệ tự nhiên
CHƯƠNG 6. KIM LOẠI KIỀM, KIM LOẠI KIỀM THỔ, NHÔM
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Hóa học lớp 12
Chương 3: Amin, amino axit và protein
ĐỀ THI THỬ THPT QUỐC GIA MÔN ĐỊA LÍ