GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 39 trang 36 SGK giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cùng các câu hỏi như trong bài tập 38 đối với đồ thị của hàm số sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

\(y = {{{x^2} + x - 4} \over {x + 2}}\)

Lời giải chi tiết:

\(y = x - 1 - {2 \over {x + 2}}\)

TXĐ: \(D =\mathbb R\backslash \left\{ { - 2} \right\}\)

+) Tìm các đường tiệm cận:

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} y =  - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} y =  + \infty \) nên \(x = -2\) là tiệm cận đứng.
\(\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } {{ - 2} \over {x + 2}}=0\) nên \(y = x -1\) là tiệm cận xiên.

Chú ý:

Áp dụng cách chia như bài 38 để viết lại hàm số theo lược đồ dưới đây:

+) Tìm giao điểm hai đường tiệm cận:

Gọi I là giao điểm hai đường tiệm cận, tọa độ của I thỏa mãn hệ phương trình 

\(\left\{ \begin{array}{l}
x = - 2\\
y = x - 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = - 2\\
y = - 3
\end{array} \right. \) \(\Rightarrow I\left( { - 2; - 3} \right)\)

+ Công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ OI là: \(\left\{ \begin{array}{l}x = X - 2\\y = Y - 3\end{array} \right.\)

+) Phương trình của đường cong (C1) trong hệ tọa độ IXY:

\(\begin{array}{l}y = x - 1 - \frac{2}{{x + 2}}\\ \Leftrightarrow Y - 3 = X - 2 - 1 - \frac{2}{{X - 2 + 2}}\\ \Leftrightarrow Y = X - \frac{2}{X}\end{array}\)

Vậy (C1) trong hệ tọa độ IXY có phương trình \(Y = X - \frac{2}{X}\)

Đây là hàm số lẻ nên đồ thị (C1) nhận gốc tọa độ I làm tâm đối xứng.

LG b

\(y = {{{x^2} - 8x + 19} \over {x - 5}}\)

Lời giải chi tiết:

 Ta có: \(y = x - 3 + \frac{4}{{x - 5}}\) \(\left( {{C_2}} \right)\)

+ Tiệm cận xiên của đồ thị (C2) là đường thẳng y=x-3

(Vì \(\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {x - 3} \right)} \right]\)\( = \mathop {\lim }\limits_{x \to  \pm \infty } \left( {x - 3 + \frac{4}{{x - 5}} - x + 3} \right)\)  \( = \mathop {\lim }\limits_{x \to  \pm \infty } \left( {\frac{4}{{x - 5}}} \right) = 0\))

Tiệm cận đứng của đồ thị là đường thẳng x = 5

(vì \(\mathop {\lim }\limits_{x \to {5^ + }} y = \mathop {\lim }\limits_{x \to {5^ + }} \left( {x - 3 + \frac{4}{{x - 5}}} \right) =  + \infty \) và \(\mathop {\lim }\limits_{x \to {5^ - }} y = \mathop {\lim }\limits_{x \to {5^ - }} \left( {x - 3 + \frac{4}{{x - 5}}} \right) =  - \infty \))

+ Giao điểm I của hai tiệm cận có tọa độ thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x = 5\\y = x - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 2\end{array} \right.\)

Vậy I(5; 2)

+ Công thức chuyển hệ tọa độ trong phép tịnh tiến theo véc tơ OI là \(\left\{ \begin{array}{l}x = X + 5\\y = Y + 2\end{array} \right.\)

+ Phương trình của đường cong (C2) trong hệ tọa độ IXY:

Ta có:

\(\begin{array}{l}y = x - 3 + \frac{4}{{x - 5}}\\ \Leftrightarrow Y + 2 = X + 5 - 3 + \frac{4}{{X + 5 - 5}}\\ \Leftrightarrow Y = X + \frac{4}{X}\end{array}\)

Đây là hàm lẻ nên đồ thị (C2) nhận gốc tọa độ I làm tâm đối xứng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved