Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Cho khối lăng trụ đứng \(ABC.A’B'C’\) có diện tích đáy bằng \(S\) và \(AA' = h\). Một mặt phẳng \((P)\) cắt các cạnh \(AA', BB’, CC'\) lần lượt tại \({A_1},{B_1}\) và \(C_1\). Biết \(A{A_1} = a,B{B_1} = b,CC_1 = c\).
LG a
Tính thể tích hai phần của khối lăng trụ được phân chia bởi mặt phẳng \((P)\).
Lời giải chi tiết:
Kẻ đường cao \(AI\) của tam giác \(ABC\) thì \(AI \bot \left( {BCC'B'} \right)\)
\(\Rightarrow AI = d\left( {{A_1};\left( {BCC'B'} \right)} \right)\). Ta có:
\(\eqalign{
& {V_{_{ABC.{A_1}{B_1}{C_1}}}} = {V_{{A_1}.ABC}} + {V_{{A_1}BC{C_1}{B_1}}} \cr
& = \frac{1}{3}A{A_1}.{S_{ABC}} + \frac{1}{3}{S_{BC{C_1}{B_1}}}.d\left( {{A_1},\left( {BC{C_1}{B_1}} \right)} \right)\cr &= {1 \over 3}{\rm{aS + }}{1 \over 3}{S_{BC{C_1}{B_1}}}.AI \cr
& = {1 \over 3}aS + {1 \over 3}.{1 \over 2}\left( {b + c} \right).BC.AI \cr
& = {1 \over 3}aS + {1 \over 3}\left( {b + c} \right)S \cr &= {1 \over 3}\left( {a + b + c} \right)S \cr
& {V_{{A_1}{B_1}{C_1}A'B'C'}} = {V_{ABC.A'B'C'}} - {V_{ABC.{A_1}{B_1}{C_1}}} \cr
& = Sh - {1 \over 3}\left( {a + b + c} \right)S \cr &= \frac{1}{3}S\left( {3h - a - b - c} \right) \cr} \)
Cách khác:
Không làm mất tính tổng quát, giả sử a≤b≤c.
Trên cạnh BB’ lấy B2 sao cho BB2=a
B1B2=b-a
Trên cạnh CC’ lấy C2 sao cho CC2=a
C1C2=c-a
Ta có: \({V_{ABC.{A_1}{B_1}{C_1}}} \) \(= {V_{ABC.{A_1}{B_2}{C_2}}} + {V_{{A_1}{B_2}{C_2}{B_1}}} + {V_{{A_1}{B_1}{C_2}{C_1}}}\)
Trong đó:
\(\begin{array}{l}{V_{ABC.{A_1}{B_2}{C_2}}} = A{A_1}.{S_{ABC}} = aS\left( 1 \right)\\{V_{{A_1}{B_2}{C_2}{B_1}}} = \frac{1}{3}{B_1}{B_2}.{S_{{A_1}{B_2}{C_2}}}\\ = \frac{1}{3}\left( {b - a} \right)S\left( 2 \right)\end{array}\)
(vì B1 B2⊥(A1 B2 C2 ); ∆A1 B2 C2=∆ABC)
Thay (1), (2) và (3) vào (*) ta được:
LG b
Với điều kiện nào của \(a, b, c\) thì thể tích hai phần đó bằng nhau ?
Lời giải chi tiết:
\({V_{ABC.{A_1}{B_1}{C_1}}} = {V_{{A_1}{B_1}{C_1}.A'B'C'}} \) \(\Leftrightarrow {1 \over 3}\left( {a + b + c} \right)S = \frac{1}{3}S\left( {3h - a - b - c} \right) \) \( \Leftrightarrow a + b + c = 3h - a - b - c\) \(\Leftrightarrow 3h = 2\left( {a + b + c} \right)\)