ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 4 trang 74 SGK Đại số và Giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Gieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt \(b\) chấm. Xét phương trình \(x^2 + bx + 2 = 0\). Tính xác suất sao cho:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Phương trình có nghiệm

Phương pháp giải:

Phương trình bậc hai có nghiệm \(\left( {\Delta  \ge 0} \right)\).

Lời giải chi tiết:

Không gian mẫu là \(Ω = \left\{{1, 2, 3, 4, 5, 6}\right\}\), \(n(Ω )=6\)

Ta có bảng:

Phương trình \(x^2 + bx + 2 = 0\) có nghiệm khi và chỉ khi \(∆ = b^2 - 8 ≥ 0\) (*).

Vì vậy nếu \(A\) là biến cố: "Xuất hiện mặt \(b\) chấm sao cho phương trình \(x^2 + bx + 2 = 0\) có nghiệm"

thì \(A =\left\{{3, 4, 5, 6}\right\}, n(A) = 4\) và \(P(A)\) = \(\frac{4}{6}\) = \(\frac{2}{3}\).

Cách khác:

Phương trình (1) có nghiệm

\(\begin{array}{*{20}{l}}
{ \Leftrightarrow {\rm{ }}\Delta \ge 0{\rm{ }} \Leftrightarrow {\rm{ }}b{\rm{ }} \ge {\rm{ }}2\surd 2}\\
{ \Rightarrow {\rm{ }}b \in \left\{ {3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6} \right\}.}\\
{ \Rightarrow {\rm{ }}A = \left\{ {3,{\rm{ }}4,{\rm{ }}5,{\rm{ }}6} \right\}}\\
{ \Rightarrow {\rm{ }}n\left( A \right) = {\rm{ }}4}
\end{array}\)

\(P(A)\) = \(\frac{4}{6}\) = \(\frac{2}{3}\).

LG b

Phương trình vô nghiệm.

Phương pháp giải:

Phương trình bậc hai vô nghiệm \(\left( {\Delta  < 0} \right)\).

Lời giải chi tiết:

Biến cố \(B\): "Xuất hiện mặt \(b\) chấm sao cho phương trình \(x^2 + bx + 2 = 0\) vô nghiệm"

Dễ thấy A và B là các biến cố đối

Theo qui tắc cộng xác suất ta có \(P(B) = 1 - P(A)\) = \(\frac{1}{3}\).

Cách khác:

(1) vô nghiệm

\(\begin{array}{*{20}{l}}
{ \Leftrightarrow {\rm{ }}\Delta {\rm{ }} < {\rm{ }}0{\rm{ }} \Leftrightarrow {\rm{ }}b{\rm{ }} \le {\rm{ }}2\surd 2}\\
{ \Rightarrow {\rm{ }}b{\rm{ }} \in {\rm{ }}\left\{ {1;{\rm{ }}2} \right\}}\\
{ \Rightarrow {\rm{ }}B{\rm{ }} = {\rm{ }}\left\{ {1,{\rm{ }}2} \right\}}\\
{ \Rightarrow {\rm{ }}n\left( B \right){\rm{ }} = {\rm{ }}2}
\end{array}\)

\(P(B)\) \(=\frac{2}{6}\) = \(\frac{1}{3}\)

LG c

Phương trình có nghiệm nguyên.

Phương pháp giải:

Điều kiện cần để phương trình bậc hai có nghiệm nguyên là \(\Delta \) là số chính phương.

Lời giải chi tiết:

\(C\) là biến cố: "Xuất hiện mặt \(b\) chấm sao cho phương trình \(x^2 + bx + 2 = 0\) có nghiệm nguyên" 

Phương trình (1) có nghiệm

\(\Leftrightarrow {\rm{ }}b{\rm{ }} \in {\rm{ }}\left\{ {3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6} \right\}.\)

Thử các giá trị của b ta thấy:

Khi \(b=3\) thì phương trình trở thành \({x^2} + 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 2\end{array} \right.\,\,\left( {tm} \right)\)

Do đó \(C = \left\{{3}\right\} \Rightarrow n\left( C \right) = 1\).

Vậy \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{1}{6}.\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved