Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Cho phương trình \(x^2 – x – 2 = 0\)
LG a
LG a
Giải phương trình
Phương pháp giải:
Giải phương trình bằng cách sử dụng công thức nghiệm hoặc
+) Xét phương trình bậc hai: \(a{x^2} + bx + c = 0\,(a \ne 0).\)
Nếu phương trình có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1,\) nghiệm kia là \({x_2} = - \dfrac{c}{a}.\)
Lời giải chi tiết:
Giải phương trình: \(x^2 – x – 2 = 0\)
\(\Delta = (-1)^2– 4.1.(-2) = 1 + 8 > 0\)
\(\sqrt\Delta= \sqrt9 = 3\)
\(\Rightarrow {x_1} = -1; {x_2}= 2\)
LG b
LG b
Vẽ hai đồ thị \(y = x^2\) và \(y = x + 2\) trên cùng một hệ trục tọa độ.
Phương pháp giải:
Lập bảng giá trị rồi vẽ hai đồ thị hàm số \(y = {x^2};y = x + 2\)
Lời giải chi tiết:
Vẽ đồ thị hàm số
- Hàm số \(y = x^2\)
+ Bảng giá trị:
- Hàm số \(y = x + 2\)
+ Cho \(x = 0 ⇒ y = 2\) được điểm \(A(0;2)\)
+ Cho \(x = -2 ⇒ y = 0\) được điểm \(B(-2;0)\)
Đồ thị hàm số:
LG c
LG c
Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm của hai đồ thị.
Phương pháp giải:
Thay hai nghiệm tìm được ở câu a) vào mỗi hàm số để so sánh các giá trị của \(y.\)
Lời giải chi tiết:
Ta có phương trình hoành độ giao điểm của hai đồ thị là:
\({x^2} = x + 2 \Leftrightarrow {x^2} - x - 2 = 0\) có \(a - b + c = 1 - \left( { - 1} \right) + \left( { - 2} \right) = 0\) nên có hai nghiệm \({x_1} = - 1;{x_2} = 2.\)
Điều này chứng tỏ rằng đường thẳng cắt đồ thị parapol tại hai điểm có hoành độ lần lượt là \(x = -1; x= 2\). Hai giá trị này cũng chính là nghiệm của phương trình \(x^2 - x - 2 = 0\) ở câu a).
Đề thi vào 10 môn Toán Ninh Bình
Đề thi vào 10 môn Anh Đắk Lắk
Đề thi vào 10 môn Toán Nghệ An
Đề thi vào 10 môn Toán Hải Phòng
PHẦN 2. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NAY