GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 56 trang 50 SGK giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số \(y = {{{x^2}} \over {x + 1}}\)

Lời giải chi tiết:

\(D = R\backslash \left\{ { - 1} \right\}\)

\(\eqalign{
& y' = {{{x^2} + 2x} \over {{{\left( {x + 1} \right)}^2}}} \cr 
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
x = - 2 \hfill \cr} \right. \cr} \)

Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \((-2;-1)\) và \((1;0)\)

Hàm số đạt cực đại tại \(x=-2\), \(y_{CĐ}=-4\)

Hàm số đạt cực tiểu tại \(x=0\) , \(y_{CT}=0\)

\(\mathop {\lim }\limits_{x \to  - {1^ + }} y =  + \infty \)

\(\mathop {\lim }\limits_{x \to  - {1^ - }} y =  - \infty \)

Vậy \(x=-1\) là tiệm cận đứng.

Ta có: \(y = \frac{{{x^2}}}{{x + 1}} = \frac{{{x^2} - 1 + 1}}{{x + 1}} \) \(= \frac{{{x^2} - 1}}{{x + 1}} + \frac{1}{{x + 1}} = x - 1 + \frac{1}{{x + 1}}\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - (x - 1)} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } \left( {{1 \over {x + 1}}} \right) = 0\)

Vậy \(y=x-1\) là tiệm cận xiên.

Bảng biến thiên

Đồ thị

Đồ thị giao \(Ox\), \(Oy\) tại \(O(0;0)\)

\(x=-2\rightarrow y=-4\)

LG b

Từ đồ thị \((C)\) suy ra cách vẽ đồ thị của hàm số \(y = {{{x^2}} \over {\left| {x + 1} \right|}}\)

Lời giải chi tiết:

Ta có 

\(y = {{{x^2}} \over {\left| {x + 1} \right|}} = \left\{ \matrix{
{{{x^2}} \over {x + 1}}\,\,\text{nếu} \,x > - 1 \hfill \cr 
- {{{x^2}} \over {x + 1}}\,\,\text{ nếu }\,x < - 1 \hfill \cr} \right.\)

Do đó cách dựng:

- Giữ nguyên phần đồ thị \((C)\) ở bên phải tiệm cận đứng \(x = -1\)

- Lấy đối xứng của phần \((C)\) bên trái tiệm cận đứng qua trục hoành.

- Hợp hai phần đồ thị này ta được đồ thị hàm số cần tìm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved