Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
Cho hàm số: \(f\left( x \right) = {x^3} - 3x + 1\)
LG a
Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
Lời giải chi tiết:
Tập xác định \(D=\mathbb R\)
\(f'\left( x \right) = 3{x^2} - 3\)
\(f'(x) = 0 \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = - 1 \hfill \cr} \right.\)
Hàm số đồng biến trên khoảng: \(\left( { - \infty ; - 1} \right)\) và \( \left( {1; + \infty } \right)\)
Hàm số nghịch biến trên khoảng \((-1;1)\)
+) Cực trị:
Hàm số đạt cực đại tại \(x=-1;y(-1)=3\)
Hàm số đạt cực tiểu tại \(x=1; y(1)=-1\)
+) Giới hạn:
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \cr
& \mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \cr} \)
Bảng biến thiên:
Đồ thị
Đồ thị giao trục \(Oy\) tại điểm \((0;1)\)
Hàm số đồ thị nhận \(I(0;1)\) làm tâm đối xứng
LG b
Viết phương trình tiếp tuyến của đồ thị tại điểm uốn U của nó.
Lời giải chi tiết:
\(f'\left( x \right) = 3{x^2} - 3\)
\(f''\left( x \right)=6x\)
\(f''\left( x \right) = 0 \Leftrightarrow x = 0; f'(0)=-3\)
\(f\left( 0 \right) = 1\). Điểm uốn U(0;1)
Phương tiếp tuyến của (C) tại U là:
\(y - 1 = f'\left( 0 \right)\left( {x - 0} \right)\) \( \Leftrightarrow y = - 3x + 1\)
LG c
Gọi \(\left( {{d_m}} \right)\) là đường thẳng đi qua điểm U và có hệ số góc m. Tìm các giá trị của m sao cho đường thẳng \(\left( {{d_m}} \right)\) cắt đồ thị của hàm số đã cho tại ba điểm phân biệt.
Lời giải chi tiết:
Phương trình đường thẳng \(\left( {{d_m}} \right)\) là y = mx +1.
Hoành độ giao điểm của đường thẳng \(\left( {{d_m}} \right)\) và đường cong (C) là nghiệm của phương trình
\({x^3} - 3x + 1 = mx + 1\) \( \Leftrightarrow {x^3} - \left( {m + 3} \right)x = 0\)
\( \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
{x^2} = m + 3 \,\,(2)\hfill \cr} \right.\)
\(\left( {{d_m}} \right)\) cắt (C) tại 3 điểm phân biệt khi và chỉ khi (1) có 3 nghiệm phân biệt
\( \Leftrightarrow \left( 2 \right)\) có hai nghiệm phân biệt khác 0, tức \(m + 3 > 0 \Leftrightarrow m > - 3\)
Chú ý:
ĐK tổng quát các em có thể dùng:
(1) có 3 nghiệm phân biệt \( \Leftrightarrow \left( 2 \right)\) có hai nghiệm phân biệt khác 0
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\f\left( 0 \right) \ne 0\end{array} \right.\)