Bài 9 trang 111 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e

Cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z = 0.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e

LG a

Tìm tọa độ tâm mặt cầu và bán kính mặt cầu.

Lời giải chi tiết:

Ta có \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z = 0.\)

Có a=1,b=2,c=3, d=0 nên \(R = \sqrt {1 + 4 + 9 - 0}  = \sqrt {14} \)

Mặt cầu có tâm I(1; 2; 3) và có bán kính \(R = \sqrt {14} .\)

Cách khác:

Phương trình: x2+y2+z2-2x-4y-6z=0

⇔ (x-1)2+(y-2)2+(z-3)2=14

Vậy mặt cầu (S) có tâm là I = (1; 2; 3), bán kính R = √14

LG b

Tùy theo giá trị k, xét vị trí tương đối của mặt cầu (S) và mp(P): \(x + y - z + k = 0\).

Lời giải chi tiết:

Khoảng cách từ điểm I đến mp(P) là: \(d(I,(P)) = {{\left| {1 + 2 - 3 + k} \right|} \over {\sqrt {{1^2} + {1^2} + {1^2}} }} = {{\left| k \right|} \over {\sqrt 3 }}.\)
i) \({{\left| k \right|} \over {\sqrt 3 }} < \sqrt {14}  \Leftrightarrow \left| k \right| < \sqrt {42} :\,\,\left( P \right)\) cắt (S) theo một giao tuyến là một đường tròn.
ii) \({{\left| k \right|} \over {\sqrt 3 }} = \sqrt {14}  \Leftrightarrow \left| k \right| = \sqrt {42} :\,\,\left( P \right)\) tiếp xúc với (S).
iii) \({{\left| k \right|} \over {\sqrt 3 }} > \sqrt {14}  \Leftrightarrow \left| k \right| > \sqrt {42} :\,\,\left( P \right)\) không cắt (S).

LG c

Mặt cầu cắt ba trục Ox, Oy, Oz tại ba điểm A, B, C khác gốc tọa độ O. Viết phương trình mp(ABC).

Lời giải chi tiết:

(S) cắt Ox, Oy, Oz lần lượt tại A, B, C (khác O) thì A(2; 0; 0) ; B(0; 4; 0) ; C(0; 0; 6).

Phương trình mặt phẳng (ABC): \({x \over 2} + {y \over 4} + {z \over 6} = 1.\)

LG d

Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm B.

Lời giải chi tiết:

\(Mp\left( \alpha  \right)\) tiếp xúc với (S) tại B thì \(\left( \alpha  \right)\) qua B và có vectơ pháp tuyến \(\overrightarrow {IB}  = \left( { - 1;2; - 3} \right)\).
Vậy \(\left( \alpha  \right): - \left( {x - 0} \right) + 2\left( {y - 4} \right) - 3\left( {z - 0} \right) = 0 \) \(\Leftrightarrow x - 2y + 3z + 8 = 0.\)

LG e

Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) và song song với mặt phẳng (Q) có phương trình \(4x + 3y - 12z - 1 = 0.\)

Lời giải chi tiết:

Mp(Q’) // mp(Q) nên (Q’) có phương trình: \(4x + 3y - 12z + D = 0\,\,\left( {D \ne  - 1} \right).\)
(Q’) tiếp xúc với (S)

\(\eqalign{
& \Leftrightarrow d\left( {I;\left( {Q'} \right)} \right) = R \cr &\Leftrightarrow {{\left| {4.1 + 3.2 - 12.3 + D} \right|} \over {\sqrt {{4^2} + {3^2} + {{12}^2}} }} = \sqrt {14} . \cr 
& \Leftrightarrow {{\left| {D - 26} \right|} \over {13}} = \sqrt {14} \cr &\Leftrightarrow D = 26 \pm 13\sqrt {14} . \cr} \)

Vậy có hai mặt phẳng cần tìm là: \(4x + 3y - 12z + 26 \pm 13\sqrt {14}  = 0.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved