Đề bài
Vẽ một đường thẳng cắt hai đường thẳng sao cho trong các góc tạo thành có một cặp góc so le trong bằng nhau. Đặt tên cho các góc đó.
a) Vì sao cặp góc so le trong còn lại cũng bằng nhau ?
b) Vì sao các cặp góc đồng vị cũng bằng nhau ?
c) Vì sao các cặp góc trong cùng phía bù nhau ?
Lời giải chi tiết
Đường thẳng c cắt hai đường thẳng a và b tạo thành hai góc A4 và B2 so le trong bằng nhau.
a)Ta có: \(\widehat {{A_4}} + \widehat {{A_3}} = \widehat {{B_1}} + \widehat {{B_2}}\)
(=1800 hai cặp góc kề bù)
Mà \(\widehat {{A_4}} = \widehat {{B_2}}\) (giả thiết) nên \(\widehat {{A_3}} = \widehat {{B_1}}\)
Vậy các cặp góc so le trong còn lại cũng bằng nhau.
b) Ta có: \(\widehat {{A_3}} = \widehat {{B_1}}\) (chứng minh câu a) và \(\widehat {{A_1}} = \widehat {{A_3}}\) (hai góc đối đỉnh) \( \Rightarrow \widehat {{A_1}} = \widehat {{B_1}}\)
\(\widehat {{A_3}} = \widehat {{B_1}}\) (chứng minh ở câu a) và \(\widehat {{B_2}} = \widehat {{B_3}}\) (hai góc đối đỉnh) \( \Rightarrow \widehat {{A_3}} = \widehat {{B_3}}\)
Ta có: \(\widehat {{A_4}} = \widehat {{B_2}}\) (hai góc sole trong) và \(\widehat {{B_2}} = \widehat {{B_4}}\) (hai góc đối đỉnh) \( \Rightarrow \widehat {{A_4}} = \widehat {{B_4}}\)
Ta có: \(\widehat {{A_4}} = \widehat {{B_2}}\) (hai góc sole trong) và \(\widehat {{A_2}} = \widehat {{A_4}}\) (hai góc đối đỉnh) \( \Rightarrow \widehat {{A_2}} = \widehat {{B_2}}\)
Vậy các cặp góc đồng vị cũng bằng nhau.
c) Ta có: \(\widehat {{A_1}} + \widehat {{A_4}} = {180^0}\) (hai góc kề bù) và \(\widehat {{A_1}} = \widehat {{B_1}}\) (chứng minh câu b)
Suy ra: \(\widehat {{B_1}} + \widehat {{A_4}} = {180^0}\)
Ta có: \(\widehat {{A_2}} + \widehat {{A_3}} = {180^0}\) (hai góc kề bù) và \(\widehat {{A_2}} = \widehat {{B_2}}\) (chứng minh câu b)
Suy ra: \(\widehat {{B_2}} + \widehat {{A_3}} = {180^0}\)
Vậy các cặp góc trong cùng phía bù nhau.
Chủ đề 3: Hợp tác thực hiện nhiệm vụ chung
Skills Practice C
Chủ đề 3. Phân tử
Chủ đề 7. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
Unit 6. Survival
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Vở thực hành Toán Lớp 7