Bài tập 26 trang 155 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho góc xOy. Lấy các điểm A, B thuộc tia Ox sao cho OA < OB. Lấy C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:

a) AD = BC

b) \(\Delta EAB = \Delta ECD\)

c) OE là tia phân giác góc xOy.

Lời giải chi tiết

 

a) Xét tam giác OCB và OAD có:\(\eqalign{  & OC{\rm{ }} = {\rm{ }}OA{\rm{ }}\left( {gt} \right)  \cr  & \widehat {COB} = \widehat {AOD}(gocchung)  \cr  & OB = OD(gt) \cr} \)

Do đó: \(\Delta OCB = \Delta OAD(c.g.c) \Rightarrow BC = AC\)

b) Ta có:

\(\eqalign{  & *\Delta OCB = \Delta OAD  \cr  &  \Rightarrow \widehat {ODA} = \widehat {OBC};\widehat {OCB} = \widehat {OAD} \cr} \)

*OC + CD = OD và OA + AB = OB

Mà OC = OA và OD = OB nên CD = AB.

*\(\widehat {OCE} + \widehat {ECD} = {180^0}\)  (kề bù) và \(\widehat {OAE} + \widehat {EAB} = {180^0}\)  (kề bù).

Mà \(\widehat {OCE} = \widehat {OAE}(cmt)\)  nên \(\widehat {ECD} = \widehat {EAB}\)

Xét tam giác EAB và ECD có: \(\eqalign{  & \widehat {EAB} = \widehat {ECD}(cmt)  \cr  & AB = CD(cmt)  \cr  & \widehat {EBA} = \widehat {EDC}(\widehat {ODA} = \widehat {OBC}) \cr} \)

Do đó: \(\Delta EAB = \Delta ECD(g.c.g).\)

c) Ta có: \(\Delta EAB = \Delta ECD \Rightarrow EB = ED;\widehat {EBA} = \widehat {EDC}\)

Xét tam giác OEB và OED có: \(\eqalign{  & OB = OD(gt)  \cr  & \widehat {OBE} = \widehat {ODE}(cmt)  \cr  & EB = ED(cmt) \cr} \)

Do đó: \(\Delta OEB = \Delta OED(c.g.c) \Rightarrow \widehat {EOB} = \widehat {EOD}\)

Vậy OE là tia phân giác của góc xOy.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved