Đề bài
Cho hình vuông A1B1C1D1 có các cạnh bằng 6cm. Người ta dựng các hình vuông A2B2C2D2, A3B3C3D3, …, AnBnCnDn, … theo cách sau : Với mỗi n = 2, 3, 4, … lấy các điểm An, Bn , Cn, và Dn tương ứng trên các cạnh An-1Bn-1, Bn-1Cn-1, Cn-1Dn-1và Dn-1An-1 sao cho An-1An = 1cm và AnBnCnDn là một hình vuông (h.3.2). Xét dãy số (un) với un là độ dài cạnh của hình vuông AnBnCnDn.
Hãy cho dãy số (un) nói trên bởi hệ thức truy hồi.
Lời giải chi tiết
Với mỗi \(n \in \mathbb N^*\), xét các hình vuông \({A_n}{B_n}{C_n}{D_n}\) và \({A_{n + 1}}{B_{n + 1}}{C_{n + 1}}{D_{n + 1}},\) ta có
\(\eqalign{& {u_{n + 1}} = {A_{n + 1}}{B_{n + 1}} \cr&= \sqrt {{{\left( {{A_{n + 1}}{B_n}} \right)}^2} +{{\left( {{B_n}{B_{n + 1}}} \right)}^2}} \cr & = \sqrt {{{\left( {{A_n}{B_n} - 1} \right)}^2} + {1^2}} \cr & = \sqrt {{{\left( {{u_n} - 1} \right)}^2} + 1} \cr} \)
Chủ đề 1. Xây dựng và phát triển nhà trường
Chuyên đề 3: Vệ sinh an toàn thực phẩm
Đề kiểm tra giữa kì 1
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
Chủ đề 4: Chiến thuật thi đấu cơ bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11