Cho dãy số (un) xác định bởi :
\({u_1} = 2\,\text{ và }\,{u_n} = 3{u_{n - 1}}\) với mọi n ≥ 2
LG a
Hãy tìm số hạng tổng quát của dãy số (un)
Lời giải chi tiết:
Ta có: \({{{u_n}} \over {{u_{n - 1}}}} = 3,\forall n \ge 2\)
(un) là một cấp số nhân có số hạng đầu u1 = 2 và công bội q = 3 ta được :
\({u_n} = {2.3^{n - 1}}\)
LG b
Hãy tính tổng 10 số hạng đầu tiên của dãy số (un).
Lời giải chi tiết:
\({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{2\left( {1 - {3^{10}}} \right)}}{{1 - 3}}\) \( = {3^{10}} - 1\)
Review (Units 7 - 8)
Chủ đề 3. Sinh trưởng và phát triển ở sinh vật
Tải 20 đề kiểm tra 15 phút - Chương III - Hóa học 11
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Giáo dục kinh tế và pháp luật lớp 11
Chủ đề 5. Phát triển cộng đồng
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11