Giải các phương trình sau :
a. \(\sin 4x = \sin {\pi \over 5}\)
b. \(\sin \left( {{{x + \pi } \over 5}} \right) = - {1 \over 2}\)
c. \(\cos {x \over 2} = \cos \sqrt 2 \)
d. \(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5}.\)
LG a
LG a
\(\sin 4x = \sin {\pi \over 5}\)
Lời giải chi tiết:
Ta có:
\(\sin 4x = \sin {\pi \over 5} \)
\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
4x = \frac{\pi }{5} + k2\pi \\
4x = \pi - \frac{\pi }{5} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{20}} + \frac{{k\pi }}{2}\\
4x = \frac{{4\pi }}{5} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{20}} + \frac{{k\pi }}{2}\\
x = \frac{\pi }{5} + \frac{{k\pi }}{2}
\end{array} \right.,k\in Z
\end{array}\)
LG b
LG b
\(\sin \left( {{{x + \pi } \over 5}} \right) = - {1 \over 2}\)
Lời giải chi tiết:
Vì \( - {1 \over 2} =- \sin {\pi \over 6} = \sin \left( { - {\pi \over 6}} \right)\) nên:
\(\sin \left( {{{x + \pi } \over 5}} \right) = - {1 \over 2}= \sin \left( { - {\pi \over 6}} \right) \)
\(\Leftrightarrow \left[ {\matrix{{{{x + \pi } \over 5} = - {\pi \over 6} + k2\pi } \cr {{{x + \pi } \over 5} = \pi + {\pi \over 6} + k2\pi } \cr} } \right. \)
\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
x + \pi = - \frac{{5\pi }}{6} + k.10\pi \\
x + \pi = \frac{{35\pi }}{6} + k.10\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{{11\pi }}{6} + k.10\pi \\
x = \frac{{29\pi }}{6} + k.10\pi
\end{array} \right.,k\in Z
\end{array}\)
LG c
LG c
\(\cos {x \over 2} = \cos \sqrt 2 \)
Lời giải chi tiết:
\(\cos {x \over 2} = \cos \sqrt 2 \)
\(\Leftrightarrow {x \over 2} = \pm \sqrt 2 + k2\pi \)
\(\Leftrightarrow x = \pm 2\sqrt 2 + k4\pi \,\left( {k \in\mathbb Z} \right)\)
LG d
LG d
\(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5}.\)
Lời giải chi tiết:
\(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5}\)
\(\begin{array}{l}
\Leftrightarrow x + \frac{\pi }{{18}} = \pm \arccos \frac{2}{5} + k2\pi \\
\Leftrightarrow x = \pm \arccos \frac{2}{5} - \frac{\pi }{{18}} + k2\pi ,k\in Z
\end{array}\)
Cách trình bày khác:
Vì \(0 < {2 \over 5} < 1\) nên có số \(α\) sao cho \(\cos \alpha = {2 \over 5}.\) Do đó :
\(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5}\)
\(\Leftrightarrow \cos \left( {x + {\pi \over {18}}} \right) = \cos \alpha\)
\(\Leftrightarrow x = \pm \alpha - {\pi \over {18}} + k2\pi ,k \in \mathbb Z\)
Test Yourself 4
Chương VI. Bảo vệ môi trường
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Tiếng Anh lớp 11
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Ngữ văn lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11