GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Bài 1.61 trang 22 SBT Giải tích 12 Nâng cao

Đề bài

Với giá trị nào của m, phương trình

\(4{x^3} - 3x - 2m + 3 = 0\)

Có một nghiệm duy nhất ?

Phương pháp giải - Xem chi tiết

Phương trình đã cho tương đương với phương trình

\(f(x) = 4{x^3} - 3x + 3 = 2m\)

Do đó nghiệm của phương trình đã cho là hoành độ giao điểm của đồ thị (C) của hàm số \(y = 4{x^3} - 3x + 3\) và đường thẳng \(y = 2m\)

Lập bảng biến thiên của hàm số \(y = 4{x^3} - 3x + 3\).

Từ đó dễ dàng tìm được các giá trị sao cho đường thẳng \(y = 2m\) cắt (C) tại đúng một điểm.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}4{x^3} - 3x - 2m + 3 = 0\\ \Leftrightarrow 4{x^3} - 3x + 3 = 2m\end{array}\)

Xét hàm \(f\left( x \right) = 4{x^3} - 3x + 3\) trên \(\mathbb{R}\) ta có:

\(\begin{array}{l}y' = 12{x^2} - 3\\y' = 0 \Leftrightarrow 12{x^2} - 3 = 0\\ \Leftrightarrow {x^2} = \frac{1}{4} \Leftrightarrow x =  \pm \frac{1}{2}\end{array}\)

BBT:

Để phương trình có nghiệm duy nhất thì đường thẳng \(y = 2m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 1 điểm duy nhất.

Quan sát BBT ta thấy \(\left[ \begin{array}{l}2m < 2\\2m > 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 1\\m > 2\end{array} \right.\)

Vậy \(m < 1\) hoặc \(m > 2\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved