GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Bài 1.62 trang 22 SBT Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho hai hàm số: \(f(x) =  - {1 \over 4}{x^2} + x + {1 \over 4}\) và \(g(x) = \sqrt {{x^2} - x + 1} \)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Chứng minh rằng đồ thị (P) của hàm số f và đồ thị (C) của hàm số g tiếp xúc với nhau tại điểm A có hoành độ x = 1.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}f'\left( x \right) =  - \frac{1}{2}x + 1\\g'\left( x \right) = \frac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}\end{array}\)

(P) và (C ) tiếp xúc nhau \( \Leftrightarrow \) hệ \(\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f'\left( x \right) = g'\left( x \right)\end{array} \right.\) có nghiệm

Xét hệ: \(\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f'\left( x \right) = g'\left( x \right)\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - \frac{1}{4}{x^2} + x + \frac{1}{4} = \sqrt {{x^2} - x + 1} \\ - \frac{1}{2}x + 1 = \frac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}\end{array} \right.\)

Thay \(x = 1\) vào hệ trên ta thấy thỏa mãn.

Do đó hệ có nghiệm \(x = 1\).

Vậy (P) và (C ) tiếp xúc nhau tại điểm có hoành độ \(x = 1\).

LG b

Viết phương trình tiếp tuyến chung (D) của (P) và (C) tại điểm A.

Lời giải chi tiết:

Tại \(A\left( {1;1} \right)\) có: \(f'\left( 1 \right) = g'\left( 1 \right) = \frac{1}{2}\) nên phương trình tiếp tuyến là:

\(y = \frac{1}{2}\left( {x - 1} \right) + 1\) hay \(y = \frac{1}{2}x + \frac{1}{2}\).

LG c

Chứng minh rằng (P) nằm phía dưới đường thẳng (D) và (C) nằm phía trên (D).

Lời giải chi tiết:

Đặt \(h(x) = {x \over 2} + {1 \over 2}\) ta có

\(g(x) - h(x) = \sqrt {{x^2} - x + 1}  - {{x + 1} \over 2}\)

- Với \(x + 1 \le 0\) hay \(x \le  - 1\) , ta có \(g(x) - h(x) > 0\)

- Với \(x + 1 > 0\) hay \(x >  - 1\) ta có:

\(g(x) - h(x) > 0\)

\(\eqalign{&  \Leftrightarrow g(x) > h(x)  \cr&  \Leftrightarrow {g^2}(x) > {h^2}(x)  \cr&  \Leftrightarrow 4({x^2} - x + 1) > {\left( {x + 1} \right)^2}  \cr&  \Leftrightarrow 3{\left( {x - 1} \right)^2} > 0 \cr} \)

Do đó, \(g(x) - h(x) \ge 0\) với mọi \(x \in R\) và chỉ có đẳng thức khi x = 1 hay (C) luôn nằm phía trên (D).

Lại có:

\(\begin{array}{l}
f\left( x \right) - h\left( x \right)\\
= - \frac{1}{4}{x^2} + x + \frac{1}{4} - \frac{x}{2} - \frac{1}{2}\\
= - \frac{1}{4}{x^2} + \frac{x}{2} - \frac{1}{4}\\
= - \frac{1}{4}\left( {{x^2} - 2x + 1} \right)\\
= - \frac{1}{4}{\left( {x - 1} \right)^2} \le 0,\forall x
\end{array}\)

Nên (P) luôn nằm phía dưới (D).

Vậy ta có đpcm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved