Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Cho hai hàm số: \(f(x) = - {1 \over 4}{x^2} + x + {1 \over 4}\) và \(g(x) = \sqrt {{x^2} - x + 1} \)
LG a
Chứng minh rằng đồ thị (P) của hàm số f và đồ thị (C) của hàm số g tiếp xúc với nhau tại điểm A có hoành độ x = 1.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}f'\left( x \right) = - \frac{1}{2}x + 1\\g'\left( x \right) = \frac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}\end{array}\)
(P) và (C ) tiếp xúc nhau \( \Leftrightarrow \) hệ \(\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f'\left( x \right) = g'\left( x \right)\end{array} \right.\) có nghiệm
Xét hệ: \(\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f'\left( x \right) = g'\left( x \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - \frac{1}{4}{x^2} + x + \frac{1}{4} = \sqrt {{x^2} - x + 1} \\ - \frac{1}{2}x + 1 = \frac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}\end{array} \right.\)
Thay \(x = 1\) vào hệ trên ta thấy thỏa mãn.
Do đó hệ có nghiệm \(x = 1\).
Vậy (P) và (C ) tiếp xúc nhau tại điểm có hoành độ \(x = 1\).
LG b
Viết phương trình tiếp tuyến chung (D) của (P) và (C) tại điểm A.
Lời giải chi tiết:
Tại \(A\left( {1;1} \right)\) có: \(f'\left( 1 \right) = g'\left( 1 \right) = \frac{1}{2}\) nên phương trình tiếp tuyến là:
\(y = \frac{1}{2}\left( {x - 1} \right) + 1\) hay \(y = \frac{1}{2}x + \frac{1}{2}\).
LG c
Chứng minh rằng (P) nằm phía dưới đường thẳng (D) và (C) nằm phía trên (D).
Lời giải chi tiết:
Đặt \(h(x) = {x \over 2} + {1 \over 2}\) ta có
\(g(x) - h(x) = \sqrt {{x^2} - x + 1} - {{x + 1} \over 2}\)
- Với \(x + 1 \le 0\) hay \(x \le - 1\) , ta có \(g(x) - h(x) > 0\)
- Với \(x + 1 > 0\) hay \(x > - 1\) ta có:
\(g(x) - h(x) > 0\)
\(\eqalign{& \Leftrightarrow g(x) > h(x) \cr& \Leftrightarrow {g^2}(x) > {h^2}(x) \cr& \Leftrightarrow 4({x^2} - x + 1) > {\left( {x + 1} \right)^2} \cr& \Leftrightarrow 3{\left( {x - 1} \right)^2} > 0 \cr} \)
Do đó, \(g(x) - h(x) \ge 0\) với mọi \(x \in R\) và chỉ có đẳng thức khi x = 1 hay (C) luôn nằm phía trên (D).
Lại có:
\(\begin{array}{l}
f\left( x \right) - h\left( x \right)\\
= - \frac{1}{4}{x^2} + x + \frac{1}{4} - \frac{x}{2} - \frac{1}{2}\\
= - \frac{1}{4}{x^2} + \frac{x}{2} - \frac{1}{4}\\
= - \frac{1}{4}\left( {{x^2} - 2x + 1} \right)\\
= - \frac{1}{4}{\left( {x - 1} \right)^2} \le 0,\forall x
\end{array}\)
Nên (P) luôn nằm phía dưới (D).
Vậy ta có đpcm.
CHƯƠNG 8. PHÂN BIỆT MỘT SỐ CHẤT VÔ CƠ CHUẨN ĐỘ DUNG DỊCH
Unit 12: Water Sports - Thể Thao Dưới Nước
Bài 8: Thiên nhiên chịu ảnh hưởng sâu sắc của biển
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Giáo dục công dân lớp 12
Đề kiểm tra 15 phút - Chương 3 – Hóa học 12